化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1762-1771.doi: 10.11949/0438-1157.20191006

• 能源和环境工程 • 上一篇    下一篇

采用响应面法降低湿法氧化脱硫中Na2S2O3生成量

程华农(),邱娜娜,岳金彩,郑世清   

  1. 青岛科技大学计算机与化工研究所,山东 青岛 266042
  • 收稿日期:2019-09-09 修回日期:2019-11-04 出版日期:2020-04-05 发布日期:2019-11-18
  • 通讯作者: 程华农 E-mail:chn@qust.edu.cn
  • 作者简介:程华农(1974—),男,博士,副教授,chn@qust.edu.cn
  • 基金资助:
    国家自然科学基金项目(21576143);山东省重点研发计划项目(2018GGX107004)

Reduction of Na2S2O3 production in wet oxidation desulfurization by response surface method

Huanong CHENG(),Nana QIU,Jincai YUE,Shiqing ZHENG   

  1. Institute of Computer and Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2019-09-09 Revised:2019-11-04 Online:2020-04-05 Published:2019-11-18
  • Contact: Huanong CHENG E-mail:chn@qust.edu.cn

摘要:

Na2S2O3是湿法脱硫过程外排废液中最主要的副盐,降低Na2S2O3的生成量对绿色生产具有重要意义。首先采用Plackett-Burman实验筛选出影响Na2S2O3生成量的关键因素,即pH、单质硫浓度、温度。在此基础上运用响应曲面法,以Na2S2O3生成量为目标函数,进行三因素三水平的优化设计分析。研究结果表明,pH对Na2S2O3的影响最大,其次是温度和单质硫浓度,因子间交互作用的影响很小。得到最优的操作条件为pH 8.25,单质硫浓度0.47 g/L,温度31.80℃,PDS浓度90 mg/L,氧硫比1.2 mmol/mmol,此时Na2S2O3生成量为1.838 mmol/L。从Na2S2O3反应动力学和多硫离子的平衡反应两方面对各因素的影响规律进行了解释。最后对实际生产过程进行分析,发现实验得出的pH过低,不利于吸收过程的稳定,现有单质硫熔融分离方法不利于降低脱硫液中的单质硫含量,加速了副盐的生成等问题,对此提出了改进意见,并取得了显著效果。

关键词: 脱硫, 氧化再生, 硫代硫酸钠, 优化, 分析

Abstract:

Na2S2O3 is the main byproduct salt in the waste liquid discharged from the wet desulfurization process. Reducing the amount of Na2S2O3 is important for green production. Firstly, the key factors affecting the production of Na2S2O3 were screened out by Plackett-Burman test, i.e. pH, sulfur concentration and temperature. On this basis, the response surface methodology is used to optimize the design of three factors and three levels with the production of Na2S2O3 as the objective function. The results show that pH has the greatest influence on Na2S2O3, followed by temperature and sulfur concentration. And the interaction between factors is small. The optimal operating conditions are pH 8.25, sulfur concentration 0.47 g/L, temperature 31.80℃, PDS concentration 90 mg/L, oxygen-sulfur ratio 1.2 mmol/mmol, and Na2S2O3 production is 1.838 mmol/L. The influence of various factors is explained by the reaction kinetics from Na2S2O3 and the equilibrium reaction of polysulfide ions. Finally, the actual production process was analyzed and it was found that the pH obtained by the experiment was too low, which was not conducive to the stability of the absorption process. The existing elemental sulfur melt separation method is not conducive to reducing the content of elemental sulfur in the desulfurization solution, and accelerates the formation of byproduct salts. Some suggestions for improvement are put forward and remarkable results are obtained.

Key words: desulfurization, oxidation regeneration, sodium thiosulfate, optimization, analysis

中图分类号: 

  • TQ 546.5
1 上官炬, 常丽萍, 苗茂谦. 气体净化分离技术[M]. 北京: 化学工业出版社, 2012.
Shangguan J, Chang L P, Miao M Q. Gas Purification Separation Technology[M]. Beijing: Chemical Industry Press, 2012.
2 李春虎, 许世森. 煤气净化技术(煤清洁转化新技术丛书)[M]. 北京: 化学工业出版社, 2006.
Li C H, Xu S S. Gas Purification Technology (New Technology Series for Coal Clean Conversion) [M]. Beijing: Chemical Industry Press, 2006
3 张亚峰, 安路阳, 张立涛, 等. 焦化脱硫废液提盐技术进展[J]. 煤炭加工与综合利用, 2017, (6): 46-52.
Zhang Y F, An L Y, Zhang L T, et al. Progress in extraction of salt from coking desulfurization waste liquid[J]. Coal Processing and Comprehensive Utilization, 2017, (6): 46-52.
4 陈聪. 脱硫废液的除盐和回用技术研究[D]. 北京: 北京化工大学, 2011.
Chen C. Studying on desalination and reusing technology of desulfurization waste solution[D]. Beijing: Beijing University of Chemical Technology, 2011.
5 朱红, 王彩云, 赵虎, 等. HPF脱硫废液的处理方法[J]. 燃料与化工, 2014, (3): 45-47.
Zhu H, Wang C Y, Zhao H, et al. Treatments of waste HPF desulfurizing liquid[J]. Fuel and Chemical Processes, 2014, (3): 45-47.
6 张翠翠. 脱硫废液提盐回收技术[D]. 太原: 太原理工大学, 2013.
Zhang C C. Study on reusing the technology of waste liquid generated desulfurization[D]. Taiyuan: Taiyuan University of Technology, 2013.
7 王芳. 焦炉煤气脱硫废液资源化处理研究[D]. 长春: 东北师范大学, 2012.
Wang F. A study on the resourceful treatment of desulfurization waste liquid of coke oven gas[D]. Changchun: Northeast Normal University, 2012.
8 时秋颖. 湿式氧化法脱硫废液的处理[J]. 燃料与化工, 2009, (6): 54.
Shi Q Y. Treatment of desulfurization waste liquid by wet oxidation[J]. Fuel and Chemical Processes, 2009, (6): 54.
9 Niu Y, Ling K C, Sheng Q T, et al. Thermodynamic analysis on the formation of sulfur-containing byproducts in tannin extract desulfurization technology[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2013, 35(9): 880-890.
10 Kleinjan W E, de Keizer A, Janssen A J. Kinetics of the chemical oxidation of polysulfide anions in aqueous solution[J]. Water Research, 2005, 39(17): 4093-4100.
11 孟晓琴. 栲胶脱硫工艺副产物Na2S2O3成因的研究[D]. 太原: 太原理工大学, 2010.
Meng X Q. Study on the causes of by-products Na2S2O3 in the process of tannin extract desulfuruzation technology[D]. Taiyuan: Taiyuan University of Technology, 2010.
12 王建宏, 刘祝, 唐伦. 酸性铁基离子液体催化氧化硫化氢的性能研究[J]. 天然气化工(C1化学与化工), 2018, 43(4): 41-47.
Wang J H, Liu Z, Tang L. Catalytic oxidation of H2S by acidic iron(Ⅲ)-containing ionic liquids[J]. Natural Gas Chemical Industry(C1 Chemistry and Chemical Engineering), 2018, 43(4): 41-47.
13 Steudel R, Holdt G, Nagorka R. On the autoxidation of aqueous sodium polysulfide[J]. Zeitschrift für Naturforschung B, 1986, 41: 1519.
14 van den Bosch P L F, Sorokin D Y, Buisman C J N, et al. The effect of pH on thiosulfate formation in a biotechnological process for the removal of hydrogen sulfide from gas streams [J]. Environmental Science & Technology, 2008, 42(7): 2637-2642.
15 Zhang Y, Liang Z, Li L, et al. A novel elemental sulfur reduction and sulfide oxidation integrated process for wastewater treatment and sulfur recycling[J]. Chemical Engineering Journal, 2018, 342: 438-445.
16 葛宜元. 实验设计方法与design-expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.
Ge Y Y. Test Design Method and design-expert Software Application[M]. Harbin: Harbin Institute of Technology Press, 2015.
17 何为, 唐斌, 薛卫东. 优化实验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012.
He W, Tang B, Xue W D. Optimization Test Design Method and Data Analysis[M]. Beijing: Chemical Industry Press, 2012.
18 侯凤博. PDS脱硫液氧化再生实验研究[D]. 青岛: 青岛科技大学, 2018.
Hou F B. Study on oxidation regeneration of PDS desulfurization liquid[D]. Qingdao: Qingdao University of Science and Technology, 2018.
19 Kamyshny A, Goifman A, Gun J, et al. Equilibrium distribution of polysulfide ions in aqueous solutions at 25 ℃:   a new approach for the study of polysulfides equilibria[J]. Environmental Science & Technology, 2004, 38(24): 6633-6644.
20 Fischer H, Schulz-Ekloff G, Wöhrle D. Oxidation of aqueous sulfide solutions by dioxygen(Ⅱ): Catalysis by soluble and immobilized cobalt(Ⅱ) phthalocyanines[J]. Chemical Engineering & Technology, 2010, 20(9): 624-632.
21 Brien D J O, Birkenr F B. Kinetics of oxygenation of reduced sulfur species in aqueous solution[J]. Environmental Science & Technology, 1977, 11(12): 1114-1120.
22 牛艳霞. 栲胶脱硫工艺副产物生成机理及影响因素的研究[D]. 太原: 太原理工大学, 2010.
Niu Y X. Study on the formation of byproducts and effect factors in tannin extract desulfurization technology[D]. Taiyuan: Taiyuan University of Technology, 2010.
23 Kleinjan W E, Keizer A D, Janssen A J H. Equilibrium of the reaction between dissolved sodium sulfide and biologically produced sulfur[J]. Colloids and Surfaces B: Biointerfaces, 2005, 43(3): 228-237.
24 Buisman C, Uspeert P, Janssen A, et al. Kinetics of chemical and biological sulphide oxidation in aqueous solutions[J]. Water Research, 1990, 24(5): 667-671.
25 Jolley R A, Forster C F. The kinetics of sulphide oxidation[J]. Environmental Technology Letters, 1985, 6(1-11): 1-10.
26 Kleinjan W E, Lammers J N J J, Arie D K, et al. Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process[J]. Biotechnology & Bioengineering, 2010, 94(4): 633-644.
27 Teder A D, Christian S, Grundnes J, et al. The equilibrium between elementary sulfur and aqueous polysulfide solutions[J]. Acta Chemica Scandinavica, 1971, 25: 1722-1728.
28 文娟. 煤层气脱硫氧化再生槽的设计[J]. 矿业安全与环保, 2013, (6): 26-28.
Wen J. Design of oxidation regenerator for coal-bed methane desulfurization[J]. Mining Safety & Environmental Protection, 2013, (6): 26-28.
29 李逢玲, 李晋萍, 凌开成, 等. 碳酸盐缓冲溶液性质对栲胶脱硫的影响[J]. 洁净煤技术, 2011, 17(4): 77-81.
Li F L, Li J P, Ling K C, et al. Effect on tannin extract desulfurization of carbonate buffer solution[J]. Clean Coal Technology, 2011, 17(4): 77-81.
30 王祥光. 脱硫副反应及副盐回收技术研究[J]. 化肥设计, 2008, 46(4): 37-41.
Wang X G. Research on technologies of both de-sulfur side-reaction and by-salt recovery[J]. Chemical Fertilizer Design, 2008, 46(4): 37-41.
31 管福征, 陈夏, 朱建梅. 以氨为碱源的焦炉煤气脱硫工艺[J]. 燃料与化工, 2014, 45(6): 44-46.
Guan F Z, Chen X, Zhu J M. Coke oven gas desulfurization technology taking ammonia as alkali source[J]. Fuel & Chemical Processes, 2014, 45(6): 44-46.
32 孟令兵, 韩喜民, 李战学. 脱硫工段硫泡沫处理方案综述[J]. 化肥工业, 2012, 39(2): 57-59.
Meng L B, Han X M, Li Z X. Summary of schemes for treatment of sulfur foams in desulfurization section[J]. Chemical Fertilizer Industry, 2012, 39(2): 57-59.
33 邓彤, 温增光. 焦炉煤气脱硫硫泡沫处理技术改造[J]. 煤化工, 2019, 47(2): 58-60.
Deng T, Wen Z G. Technology revamping of sulfur foam treatment for coke oven gas desulfurization[J]. Coal Chemical Industry, 2019, 47(2): 58-60.
[1] 贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
[2] 刘叶峰, 左鹏, 李瑞琪, 焦纬洲, 王蕊欣. 杂多酸的共价负载及其对四氢噻吩氧化性能研究[J]. 化工学报, 2020, 71(4): 1627-1636.
[3] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[4] 周芮, 程光平, 张浩, 任枫, 王舜浩, 张小斌. 煤油贮箱冷氦鼓泡增压过程数值研究[J]. 化工学报, 2020, 71(3): 965-973.
[5] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[6] 李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
[7] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[8] 李伟斌, 宋超, 易贤, 马洪林, 杜雁霞. 动态结冰孔隙结构三维建模方法[J]. 化工学报, 2020, 71(3): 1009-1017.
[9] 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263.
[10] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[11] 冯毅萍, 章途潮, 陈歆. 面向智能制造的多要素生产成本建模方法[J]. 化工学报, 2020, 71(3): 1111-1121.
[12] 王湘月, 周晓君, 阳春华. 不确定条件下的湿法炼锌除铜过程机会约束优化控制[J]. 化工学报, 2020, 71(3): 1226-1233.
[13] 耿志强, 曾荣甫, 徐圆, 韩永明, 顾祥柏. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087.
[14] 耿志强, 毕帅, 王尊, 朱群雄, 韩永明. 基于改进NSGA-Ⅱ算法的乙烯裂解炉操作优化[J]. 化工学报, 2020, 71(3): 1088-1094.
[15] 郑必鸣, 史彬, 鄢烈祥. 多因素不确定条件下的间歇生产调度优化[J]. 化工学报, 2020, 71(3): 1246-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陆馨, 辛忠, 李春. 聚(甲基丙烯酸甲酯-co-苯乙烯)/聚硅氧烷核壳微 [J]. 化工学报, 2011, 62(2): 539 -544 .
[2] 佘铭钢;刘铮.

多孔介质电渗流动计算流体力学模拟与实验研究(Ⅱ)电渗流动与传质特性

[J]. CIESC Journal, 2003, 54(8): 1044 -1048 .
[3] 胡朝发, 贾力. 脉动热管气液塞振荡运动模型 [J]. 化工学报, 2011, 62(S1): 113 -117 .
[4] 叶 晓 云. 二氧化硅/二氧化锆核壳复合材料的制备及性能 [J]. CIESC Journal, 2010, 29(9): 1710 .
[5] 徐云慧1,李培培1,张兆红1,赵静静1,黎 丽2,王仕峰3. 废白土在天然橡胶中的应用性能 [J]. CIESC Journal, 2011, 30(9): 2035 .
[6] 张弦, 罗才武, 黄登高, 李安, 刘娟娟, 晁自胜. 醛/氨反应合成吡啶碱机理[J]. 化工学报, 2013, 64(8): 2875 -2882 .
[7] 陈磊, 陈汉平, 陆强, 宋扬, 丁学杰, 王贤华, 杨海平. 木质素结构及热解特性[J]. 化工学报, 2014, 65(9): 3626 -3633 .
[8] 王博, 刘永卓, 王东营, 郭庆杰. 废弃活性炭化学链气化制富氢合成气[J]. 化工学报, 2017, 68(9): 3541 -3550 .
[9] 马学虎, 兰忠, 王凯, 陈彦松, 程雅琦, 杜宾港, 叶轩. 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9 -43 .
[10] 丁兆阳, 韩治洋, 石文荣, 沈圆辉, 田彩霞, 韩旸湲, 张东辉. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69(2): 759 -768 .