化工学报 ›› 2020, Vol. 71 ›› Issue (3): 965-973.doi: 10.11949/0438-1157.20191003

• 流体力学与传递现象 • 上一篇    下一篇

煤油贮箱冷氦鼓泡增压过程数值研究

周芮1(),程光平2,张浩2,任枫2,王舜浩1,张小斌1()   

  1. 1.浙江大学制冷与低温研究所,浙江 杭州 310027
    2.上海宇航系统工程研究所,上海 201109
  • 收稿日期:2019-09-09 修回日期:2019-12-12 出版日期:2020-03-05 发布日期:2019-12-13
  • 通讯作者: 张小斌 E-mail:zhourui@zju.edu.cn;zhangxbin@zju.edu.cn
  • 作者简介:周芮(1994—),女,博士研究生,zhourui@zju.edu.cn

Numerical investigation on cold helium pressurization process in kerosene tank

Rui ZHOU1(),Guangping CHENG2,Hao ZHANG2,Feng REN2,Shunhao WANG1,Xiaobin ZHANG1()   

  1. 1.Institude of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.Shanghai Institute of Aerospace System Engineering, Shanghai 201109,China
  • Received:2019-09-09 Revised:2019-12-12 Online:2020-03-05 Published:2019-12-13
  • Contact: Xiaobin ZHANG E-mail:zhourui@zju.edu.cn;zhangxbin@zju.edu.cn

摘要:

火箭飞行过程中,约90 K的低温氦气用以加压室温下的煤油贮箱使煤油流出,保障发动机燃料供应。为尽可能减少氦气用量,设计低温氦气从液相中喷入,使得氦气在贮箱内上升过程先和液态煤油充分换热升温,再进入气相空间增压。但该过程可能引起两个不利的结果,首先浸没在煤油中的低温氦气管路表面可能结冰,结冰沉底或可能堵塞发动机滤网;其次氦气可能被煤油携带,从而排出口位置可能出现气液两相流。这两种情况都对火箭发动机稳定运行造成负面影响,因此是不允许的。对低温氦气在贮箱中心喷入和环向多孔喷入两种结构的气液两相流过程进行了数值研究,构建了基于Euler-Euler模型的两相传热非稳态模型,数值结果与地面实验观察到的现象进行了定性对比,定性验证了模型的准确性。重点考察了煤油排出过程两种喷入结构的气液两相流分布以及煤油结冰可能性。研究结果从机理上解释了实验现象,并为煤油贮箱增压排出方案设计提供了参考。

关键词: 煤油, 氦气, 贮箱, 两相流, 增压, 设计, 数值分析

Abstract:

During the flight of the rocket, a low temperature helium gas of about 90 K is used to pressurize the kerosene tank at room temperature to allow kerosene to flow out to ensure the supply of engine fuel. In order to reduce the amount of helium, the cryogenic gas is designed to inject into the tank under the liquid level, in which way it can absorb the heat from the liquid kerosene in the tank while rising, and then enters the gas phase to pressurize the tank. However, this process may lead to two unfavorable results. First, the surface of the cryogenic helium gas line immersed in kerosene may freeze, and the ice may sink to the bottom to block the engine screen. Second, the helium gas may be carried by kerosene, thus two-phase flow will appear at the discharge port. Both of the circumstances have an adverse impact on the operation of the rocket engine, and therefore neither of them is allowed. In this paper, numerical simulation study on two-phase flow of the cryogenic helium gas injecting into the liquid kerosene is performed through two injection ways, including the central injection from a core and circumferential injection from three cores. The unsteady two-phase heat transfer process is modeled based on the Euler-Euler model. The numerical results are qualitatively compared and verified with the experimental observations on the ground. The phase distribution and the possibility of kerosene icing in the two injection structures during the discharge process are investigated. The results provide more insights into the experimental phenomena and also a reference for the scheme of kerosene discharge.

Key words: kerosene, helium, tank, two-phase flow, pressure, design, numerical analysis

中图分类号: 

  • V 11

图1

单孔鼓泡增压方案储罐网格"

图2

环形鼓泡扩散增压网格"

图3

冷氦环形鼓泡实验贮箱内部"

图4

冷氦在水中环形鼓泡实验快照"

图5

环形鼓泡状态下模拟的不同截面上冷氦气从水中鼓泡喷出结果(“1”指的是全气相)"

图6

单孔鼓泡时储罐中的压力随时间的变化曲线"

图7

t=36 s时刻水储罐和煤油储罐气枕空间的温度云图分布"

图8

氦气/煤油单孔鼓泡在t=4,16,32 s时刻的温度分布云图"

图9

在t=4 s时刻x=0.664 m处的温度和液相含量分布曲线"

图10

环形和中心孔鼓泡气枕压力随时间的变化"

图11

t=0.3,0.9,2.4,12.5 s时中间的排气孔中心截面的气相云图"

图12

t=0.3,0.6,0.9 s时环形小孔上方水平平面上气相体积含量云图"

1 陈闽慷, 吴尚云. CZ-3A运载火箭[J]. 导弹与航天运载技术, 1999, (5): 1-8.
Chen M K, Wu S Y. LM-3A launch vehicle[J]. Missiles and Space Vehicles, 1999, (5): 1-8.
2 张福忠. 冷氦增压系统的研制[J]. 低温工程, 1996, (4): 6-12.
Zhang F Z. Development of cold helium pressurization system[J]. Cryogenics, 1996, (4): 6-12.
3 范瑞祥, 田玉蓉, 黄兵. 新一代运载火箭增压技术研究[J]. 火箭推进, 2012, 38(4): 9-16.
Fan R X, Tian Y R, Huang B. Study on pressurization of new generation launch vehicle [J]. Journal of Rocket Propulsion, 2012, 38(4): 9-16.
4 张志广, 杜正刚, 刘茉. 液体火箭冷氦增压系统低温试验研究[J]. 低温工程, 2013, (2): 60-63.
Zhang Z G, Du Z G, Liu M. Experimental study on cryogenic helium pressurization [J]. Cryogenics, 2013, (2): 60-63.
5 王承. 上面级氧箱冷氦增压系统仿真计算及分析[C]// 上海市制冷学会2017年学术年会. 2017: 60-65.
Wang C. Numerical simulation and analysis of cold helium pressurization system of upper stage oxygen tank [C]//2017 Academic Annual Conference of Shanghai Refrigeration Institute. 2017: 60-65.
6 曾源华. 20.4 K冷氦加温及氧箱的模拟增压试验技术[J]. 低温工程, 1994, (4): 10-15.
Zeng Y H. The test technology of heating of 20.4 K helium and pressurization simulation of oxygen tank[J]. Cryogenics, 1994, (4): 10-15.
7 邢力超, 赵涛, 周炎, 等. 液氢温区冷氦增压试验系统的设计[J]. 液压与气动, 2015, (101): 94-97.
Xing L C, Zhao T, Zhou Y, et al. The design of cryogenics helium pressurization testing system used in liquid hydrogen temperature[J]. Chinese Hydraulics & Pneumatics, 2015, (101): 94-97.
8 邢力超, 王道连, 程翔, 等. 液氢温区冷氦增压系统试验研究[J]. 低温工程, 2014, (6): 33-37.
Xing L C, Wang D L, Cheng X, et al. Experimental study on cryogenic helium pressurization system in liquid hydrogen temperature[J]. Cryogenics, 2014, (6): 33-37.
9 白晓瑞. 液体火箭推进系统动态特性仿真研究[D].北京: 国防科学技术大学, 2008.
Bai X R. Numerical analysis on dynamic characteristics of liquid rocket propulsion system[D]. Beijing: National University of Defense Technology, 2008.
10 王承, 巨永林, 陈煜, 等. 氧箱冷氦气瓶加注和增压系统仿真计算及分析[J]. 低温与超导, 2017, (8): 23-28.
Wang C, Ju Y L, Chen Y, et al. Numerical simulation of cold helium filling procedure and pressurization system of oxygen tank[J]. Cryo. & Supercond., 2017, (8): 23-28.
11 杜正刚, 尹贻国, 张志广, 等. 冷氦增压系统换热器换热性能研究[J]. 低温工程, 2013, (3): 38-42.
Du Z G, Yin Y G, Zhang Z G, et al. Investigation on heat exchanger performance of cryogenic helium pressurization system[J]. Cyrogenics, 2013, (3): 38-42.
12 赵耀中, 王森, 郑然, 等. 某液氢温区氦气加温换热系统设计与模拟试验[J]. 低温工程, 2013, (6): 44-47.
Zhao Y Z, Wang S, Zheng R, et al. Design and testing of a helium-nitrogen gas heat-exchanger system at liquid-hydrogen temperature[J]. Cryogenics, 2013, (6): 44-47.
13 Panzarella C H, Kassemi M. On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage[J]. Journal of Fluid Mechanics, 2003, 484: 41-68.
14 Panzarella C H, Kassemi M. Self-pressurization of large spherical cryogenic tanks in space[J]. Journal of Spacecraft & Rockets, 2012, 42(42): 299-308.
15 Barsi S, Kassemi M. Numerical and experimental comparisons of the self-pressurization behavior of an LH2 tank in normal gravity[J]. Cryogenics, 2008, 48(3/4): 122-129.
16 Kassemi M, Kartuzova O, Hylton S. Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels[J]. Cryogenics, 2018, 89: 1-15.
17 Wang L, Li Y, Zhu K, et al. Comparison of three computational models for predicting pressurization characteristics of cryogenic tank during discharge[J]. Cryogenics, 2015, 65: 16-25.
18 Chen L, Liang G Z. Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site[J]. Microgravity Science & Technology, 2013, 25(4): 203-211.
19 Wang B, Qin X, Jiang W, et al. Numerical simulation on interface evolution and pressurization behaviors in cryogenic propellant tank on orbit[J]. Microgravity-Science and Technology, 2019, (2): 1-10.
20 Kassemi M, Kartuzova O. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank[J]. Cryogenics, 2016, 74(15): 138-153.
21 Fu J, Sunden B, Chen X Q. Influence of wall ribs on the thermal stratification and self-pressurization in a cryogenic liquid tank[J]. Applied Thermal Engineering, 2014, 73: 1421-1431.
22 Zhan L, Li Y, Jin Y, et al. Thermodynamic performance of pre-pressurization in a cryogenic tank[J]. Applied Thermal Engineering, 2017, 112: 801-810.
23 Liu Z, Li Y, Jin Y. Pressurization performance and temperature stratification in cryogenic final stage propellant tank[J]. Applied Thermal Engineering, 2016, 106: 211-220.
24 Zhou R, Zhu W, Hu Z, et al. Simulations on effects of rated ullage pressure on the evaporation rate of liquid hydrogen tank[J]. International Journal of Heat and Mass Transfer, 2019, 134: 842-851.
25 Namkyung C, Ohsung K, Youngmog K, et al. Investigation of helium injection cooling to liquid oxygen propellant chamber [J]. Cryogenics, 2006, 46: 132-142.
[1] 贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
[2] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[3] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[4] 臧立静, 黄克谨, 苑杨, 钱行, 张亮, 王韶峰, 陈海胜. 轻组分绝对占优的蒸汽再压缩隔离壁蒸馏塔的最优拓扑结构[J]. 化工学报, 2020, 71(4): 1696-1711.
[5] 李爽, 李玉星, 王冬旭, 王权. 上倾管高黏油气两相流型及压降特性[J]. 化工学报, 2020, 71(3): 983-996.
[6] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[7] 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408.
[8] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[9] 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
[10] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[11] 张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353.
[12] 张亮亮, 付纪文, 罗勇, 孙宝昌, 邹海魁, 初广文, 陈建峰. 面向海洋工程的超重力过程强化技术及应用[J]. 化工学报, 2020, 71(1): 1-15.
[13] 董非, 苑天林, 武志伟, 倪捷. 基于RPI模型的内燃机冷却水腔内数值模拟研究[J]. 化工学报, 2019, 70(S2): 250-257.
[14] 杨铃,郑成,李镇明. 微波协同离子液体催化合成柠檬酸三丁酯[J]. 化工学报, 2019, 70(S2): 287-293.
[15] 汪彬, 李江道, 黄永华, 吴静怡, 王天祥, 雷刚. 节流参数对液氮贮箱热力排气系统运行特性的影响[J]. 化工学报, 2019, 70(S2): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 仲兆祥, 李冬燕, 刘馨, 邢卫红, 徐南平. The Fouling Mechanism of Ceramic Membranes Used for Recovering TS-1 Catalysts[J]. CIESC Journal, 2009, 17(1): 53 -57 .
[2] 陈宗松,刘洝甫. 垂直筛板和T形排列条形浮阀塔盘的初步研究 [J]. CIESC Journal, 1982, 33(2): 168 -178 .
[3] . JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING(CHINA) [J]. CIESC Journal, 1982, 33(4): 390 -393 .
[4] 丁浩;黄志尧;李海青.

气液两相流差压波动信号的Hilbert-Huang变换特性

[J]. CIESC Journal, 2005, 56(12): 2294 -2302 .
[5] 李国能, 林江, 李凯, 郑友取. 横向射流中心轨迹和扩展宽度 [J]. 化工学报, 2011, 62(1): 66 -70 .
[6] 邓先和,邓颂九. 管间支撑物的结构对横纹槽管管束传热强化性能的影响 [J]. CIESC Journal, 1992, 43(1): 62 -68 .
[7] 尚庆;张健;周力行.

旋流燃烧室内气体-颗粒两相湍流流动的数值模拟

[J]. CIESC Journal, 2004, 55(9): 1434 -1440 .
[8] 胡华,刘芳,刘铮,丁富新,袁乃驹. 气液反应器中气泡有效利用率(Ⅰ)——新概念的提出和理论计算式 [J]. CIESC Journal, 1997, 48(6): 660 -666 .
[9] 亓爱笃; 王树东; 洪学伦; 付桂芝; 吴迪镛. 甲醇氧化重整制氢过程(Ⅰ)反应条件对制氢过程的影响 [J]. CIESC Journal, 2001, 52(12): 1095 -1099 .
[10] 王建军, 谭慧敏, 许伟伟, 王新华, 金有海. 不同排尘结构对导叶式旋风管内气固两相流动影响的数值研究 [J]. 化工学报, 2010, 61(9): 2257 -2264 .