化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1871-1880.doi: 10.11949/0438-1157.20191000

• 材料化学工程与纳米技术 • 上一篇    下一篇

基于环三磷腈磷氮阻燃剂的合成及其在聚氨酯泡沫的应用

李梦迪(),王波,王哲慧,张晔,杨荣,李锦春()   

  1. 常州大学材料科学与工程学院 常州大学材料科学与工程国家级实验教学示范中心,江苏省环境友好高分子材料重点实验室,江苏 常州 213164
  • 收稿日期:2019-09-05 修回日期:2019-12-09 出版日期:2020-04-05 发布日期:2019-12-27
  • 通讯作者: 李锦春 E-mail:874142186@qq.com;lijinchun88@163.com
  • 作者简介:李梦迪(1994—),男,硕士研究生,874142186@qq.com
  • 基金资助:
    国家自然科学基金项目(51473024);江苏省高校自然科学基金项目(19KJB430007)

Synthesis of phosphorus-nitrogen flame retardant based on cyclophosphonate and its application on rigid polyurethane foam

Mengdi LI(),Bo WANG,Zhehui WANG,Ye ZHANG,Rong YANG,Jinchun LI()   

  1. School of Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou 213164, Jiangsu, China
  • Received:2019-09-05 Revised:2019-12-09 Online:2020-04-05 Published:2019-12-27
  • Contact: Jinchun LI E-mail:874142186@qq.com;lijinchun88@163.com

摘要:

以六氯环三磷腈、对羟基苯甲醛、苯胺及亚磷酸二乙酯等原料,成功合成阻燃剂六(4-苯胺基次甲基苯氧基-亚磷酸二乙酯基)环三磷腈(HADPPCP),用于阻燃基于苹果酸多元醇的聚氨酯硬泡。HADPPCP具有良好的热稳定性和成炭性,氮气气氛下的初始分解温度为191.9℃,700℃时的残炭量高到46.8%(质量)。HADPPCP的加入可以改善聚氨酯硬泡的热稳定性、阻燃性能和燃烧行为。添加25%(质量)的HADPPCP可以将聚氨酯泡沫的氧指数从18%提高到25%,最大热释放速率和总热释放量分别从230 kW/m2和20.1 MJ/m2降低至213 kW/m2和16.6 MJ/m2,总产烟量从10.5 m2下降到5.3 m2

关键词: 泡沫, 合成, 阻燃, 苹果酸多元醇, 硬质聚氨酯泡沫

Abstract:

Flame retardant hexa (4-anilino-methylenephenoxy-diethyl phosphite) cyclotriphosphazene (HADPPCP) was synthesized with hexachlorocyclotriphosphazene, p-hydroxybenzaldehyde, aniline, diethyl phosphite. Then it was used to prepare flame-retardant polyurethane foam. HADPPCP has good thermal stability and char formation. The initial decomposition temperature in a nitrogen atmosphere is 191.9℃, and the residual carbon content at 700℃ is as high as 46.8%(mass) in nitrogen. The addition of HADPPCP improved the fire safety of polyurethane rigid foams. When adding 25%(mass) HADPPCP, the limiting oxygen index of rigid polyurethane foam increased from 18% to 25%. The peak heat release rate and total heat release of polyurethane foam decreased from 230 kW/m2 and 20.1 MJ/m2 to 213 kW/m2 and 16.6 MJ/m2, respectively. Moreover, the total smoke production decreased from 10.5 m2 to 5.3 m2. It suggested that HADPPCP was an efficient flame retardant for RPUF, which can not only decrease heat release rate, but also suppress the smoke release rate of RPUF during the combustion.

Key words: foam, synthesis, flame retardancy, malic acid based polyols, rigid polyurethane foam

中图分类号: 

  • O 631

图1

HADPPCP的合成步骤"

表1

阻燃聚氨酯泡沫的制备配方"

SamplePU-0%FRPU-15%FRPU-20%FRPU-25%FR
malic acid based polyol100100100100
AK88052222
PC-81111
HCFC-141b20202020
H2O1111
HADPPCP045.364.285.6
PM-200132.7132.7132.7132.7

图2

HADPPCP及中间体的红外光谱"

图3

HADPPCP的核磁氢谱分析谱图"

图4

HADPPCP的核磁磷谱分析谱图"

图5

阻燃聚氨酯泡沫横截面的SEM图"

表2

聚氨酯泡沫的基本性能"

Sample

Density/

(kg/m3)

Compressive strength/

kPa

Thermal conductivity/

(W/(m·K))

PU-0%FR371550.0227
PU-15%FR381220.0232
PU-20%FR411100.0253
PU-25%FR461050.0277

图6

阻燃剂HADPPCP的TG和DTG曲线"

表3

阻燃剂HADPPCP的热重分析结果"

T5%/℃T50% /℃Tmax /℃Residues at 700℃/%(mass)
Step1Step2Step3
191.9515.8210.0292.7466.646.8

图7

阻燃聚氨酯泡沫的TG和DTG曲线"

表4

阻燃苹果酸多元醇基聚氨酯泡沫的热重分析结果"

SampleT5%/℃T50%/℃Tmax/℃Residues at 700℃/%(mass)
Step1Step2Step3
PU-0%FR247.8374.4292.0414.124.6
PU-15%FR179.4398.0198.5300.8438.731.4 (27.9)
PU-20%FR177.0402.7199.6295.9438.132.8 (29.0)
PU-25%FR174.9424.2198.7289.7420.037.5 (30.2)

表5

阻燃聚氨酯泡沫的极限氧指数(LOI)"

SampleLOI/%Self-extinguishing/s
PU-0%FR186
PU-15%FR2310
PU-20%FR2413
PU-25%FR2511

表6

无卤阻燃苹果酸多元醇基聚氨酯泡沫的锥形量热分析数据"

SampleTTI/sPHRR1/(kW/m2)PHRR2/(kW/m2)TTPHRR/sTHR/(MJ/m2)TSP/m2
PU-0%FR1230683520.110.5
PU-25%FR22132016.65.3

图8

PU-0%FR和PU-25%FR的热释放速率曲线"

图9

PU-0%FR和PU-25%FR的总热释放量曲线"

图10

PU-0%FR和PU-25%FR的总产烟量曲线"

1 Ji D, Fang Z, He W, et al. Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol[J]. Industrial Crops and Products, 2015, 74: 76-82.
2 Kakroodi A R, Khazabi M, Maynard K, et al. Soy-based polyurethane spray foam insulations for light weight wall panels and their performances under monotonic and static cyclic shear forces[J]. Industrial Crops and Products, 2015, 74: 1-8.
3 Mutlu H, Meier M A R, Metzger J O, et al. Castor oil as a renewable resource for the chemical industry[J]. European Journal of Lipid Science and Technology, 2010, 112(1): 10-30.
4 Zieleniewska M, Leszczyński M K, Kurańska M, et al. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol[J]. Industrial Crops and Products, 2015, 74: 887-897.
5 Kurańska M, Prociak A, Kirpluks M, et al. Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil[J]. Industrial Crops and Products, 2015, 74: 849-857.
6 Ferri E, Talentino D. Bio-resins from cashew nutshell oil[J]. Reinforced Plastics, 2011, 55(3): 29-31.
7 Tanaka R, Hirose S, Hatakeyama H. Preparation and characterization of polyurethane foams using a palm oil-based polyol[J]. Bioresour. Technol., 2008, 99(9): 3810-3816.
8 Yang R, Wang B, Xu L, et al. Synthesis and characterization of rigid polyurethane foam with dimer fatty acid-based polyols[J]. Polymer Bulletin, 2019, 76(7): 3753-3768.
9 Yang R, Wang B, Li M, et al. Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols[J]. Industrial Crops and Products, 2019, 136: 121-128.
10 Gharehbaghi A, Bashirzadeh R, Ahmadi Z. Polyurethane flexible foam fire resisting by melamine and expandable graphite: industrial approach[J]. Journal of Cellular Plastics, 2011, 47(6): 549-565.
11 Gupta R K, Kahol P K, Wan X, et al. Biobased polyols using thiol-ene chemistry for rigid polyurethane foams with enhanced flame-retardant properties[J]. Journal of Renewable Materials, 2017, 5(1): 1-12.
12 Choi S W, Ohba S, Brunovska Z, et al. Synthesis, characterization and thermal degradation of functional benzoxazine monomers and polymers containing phenylphosphine oxide[J]. Polymer Degradation and Stability, 2006, 91(5): 1166-1178.
13 Zima V, Svoboda J, Beneš L, et al. Synthesis and characterization of new strontium 4-carboxyphenylphosphonates[J]. Journal of Solid State Chemistry, 2007, 180(3): 929-939.
14 Nazir R, Gaan S. Recent developments in P (O/S) -N containing flame retardants[J]. Journal of Applied Polymer Science, 2020, 137(1): 47910.
15 Bai Y, Wang X, Wu D. Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15064-15074.
16 Wen P, Tai Q, Hu Y, et al. Cyclotriphosphazene-based intumescent flame retardant against the combustible polypropylene[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 8018-8024.
17 Mayer-Gall T, Knittel D, Gutmann J S, et al. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9349-9363.
18 Xu J, He Z, Wu W, et al. Study of thermal properties of flame retardant epoxy resin treated with hexakis[p-(hydroxymethyl) phenoxy]cyclotriphosphazene[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1341-1350.
19 Chen-Yang Y W, Yuan C Y, Li C H, et al. Preparation and characterization of novel flame retardant (aliphatic phosphate) cyclotriphosphazene-containing polyurethanes[J]. Journal of Applied Polymer Science, 2003, 90(5): 1357-1364.
20 Zhao B, Liang W J, Wang J S, et al. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin[J]. Polymer Degradation and Stability, 2016, 133: 162-173.
21 Liang W, Zhao B, Zhao P, et al. Bisphenol-S bridged penta (anilino) cyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability, 2017, 135: 140-151.
22 Modesti M, Zanella L, Lorenzetti A, et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes[J]. Polymer Degradation and Stability, 2005, 87(2): 287-292.
23 李雄杰, 何英杰, 邹国享, 等. 六 (γ-氨丙基硅烷三醇) 环三磷腈的制备及其在膨胀阻燃聚丙烯中的应用[J]. 复合材料学报, 2017, 34(6): 1221-1229.
Li X J, He Y J, Zou G X, et al. Synthesis of hexakis (γ-aminopropylsilanetriol) cyclotriphosphazene and application in intumescent flame retardant polypropylene[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1221-1229.
24 Xu M J, Xu G R, Leng Y, et al. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins[J]. Polymer Degradation & Stability, 2016, 123: 105-114.
25 Qian L J, Ye L J, Xu G Z, et al. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups[J]. Polymer Degradation and Stability, 2011, 96(6): 1118-1124.
26 Yang R, Hu W, Xu L, et al. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate[J]. Polymer Degradation & Stability, 2015, 122: 102-109.
27 Yang R, Wang B, Han X, et al. Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate[J]. Polymer Degradation and Stability, 2017, 144: 62-69.
28 杨荣, 乔红, 胡文田, 等. 反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫[J]. 化工学报, 2016, 67(5): 2169-2175.
Yang R, Qiao H, Hu W T, et al. Synthesis, physical-mechanical properties and fire behaviors of polyurethane foam with reactive flame retardant and expandable graphite[J]. CIESC Journal, 2016, 67(5): 2169-2175.
29 胡文田, 杨荣, 许亮, 等. 基于环三磷腈/磷酸酯反应型磷-氮阻燃剂的合成、热降解及应用[J]. 化工学报, 2015, 66 (5): 1976-1982.
Hu W T, Yang R, Xu L, et al. Synthesis, properties and application of reactive nitrogen-phosphorus flame retardant[J]. CIESC Journal, 2015, 66 (5): 1976-1982.
30 Schartel B, Hull T R. Development of fire-retarded materials-interpretation of cone calorimeter data[J]. Fire and Materials: an International Journal, 2007, 31(5): 327-354.
31 Liu Y L, Hsiue G H, Lan C W, et al. Flame-retardant polyurethanes from phosphorus-containing isocyanates[J]. Journal of Polymer Science Part A Polymer Chemistry, 1997, 35(9): 1769-1780.
[1] 徐巾超, 陈勇, 叶辉青, 张杰, 张霁, 罗忠华. 罗沙司他共晶的合成、表征与理化性质研究[J]. 化工学报, 2020, 71(4): 1851-1858.
[2] 赵少飞, 刘鹏, 李婉萍, 曾小红, 钟远红, 余林, 曾华强. 一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究[J]. 化工学报, 2020, 71(4): 1836-1843.
[3] 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397.
[4] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[5] 原野, 王明, 周云琪, 王志, 王纪孝. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450.
[6] 田亚晓, 王乃用, 李常兴, 杜文静. 泡沫镍板冷却特性的实验研究及数值模拟[J]. 化工学报, 2019, 70(S1): 79-85.
[7] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[8] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[9] 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
[10] 陈燕饶, 毛桃嫣, 郑成. 双十八烷基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2019, 70(S1): 226-234.
[11] 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247.
[12] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
[13] 王海军, 王露雨, 马明明, 万里强, 黄发荣. 新型聚三唑酯和聚三唑醚树脂的合成及性能[J]. 化工学报, 2019, 70(9): 3527-3536.
[14] 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
[15] 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[3] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[4] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[5] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[6] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788 -800 .
[7] 陈小艳, 周骛, 蔡小舒, 黄燕, 袁益超. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2): 480 -487 .
[8] 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602 -1606 .
[9] 曹健, 牟鹏, 耿志强, 朱群雄. 工业系统超结构模型应用研究进展[J]. 化工学报, 2017, 68(3): 801 -810 .
[10] 郭志超, 张丽伟, 程素君. 核壳结构α-Fe2O3锂离子电池阳极材料制备及应用[J]. 化工学报, 0, (): 3638 -3644 .