化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1871-1880.doi: 10.11949/0438-1157.20191000
Mengdi LI(),Bo WANG,Zhehui WANG,Ye ZHANG,Rong YANG,Jinchun LI(
)
摘要:
以六氯环三磷腈、对羟基苯甲醛、苯胺及亚磷酸二乙酯等原料,成功合成阻燃剂六(4-苯胺基次甲基苯氧基-亚磷酸二乙酯基)环三磷腈(HADPPCP),用于阻燃基于苹果酸多元醇的聚氨酯硬泡。HADPPCP具有良好的热稳定性和成炭性,氮气气氛下的初始分解温度为191.9℃,700℃时的残炭量高到46.8%(质量)。HADPPCP的加入可以改善聚氨酯硬泡的热稳定性、阻燃性能和燃烧行为。添加25%(质量)的HADPPCP可以将聚氨酯泡沫的氧指数从18%提高到25%,最大热释放速率和总热释放量分别从230 kW/m2和20.1 MJ/m2降低至213 kW/m2和16.6 MJ/m2,总产烟量从10.5 m2下降到5.3 m2。
中图分类号:
1 | Ji D, Fang Z, He W, et al. Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol[J]. Industrial Crops and Products, 2015, 74: 76-82. |
2 | Kakroodi A R, Khazabi M, Maynard K, et al. Soy-based polyurethane spray foam insulations for light weight wall panels and their performances under monotonic and static cyclic shear forces[J]. Industrial Crops and Products, 2015, 74: 1-8. |
3 | Mutlu H, Meier M A R, Metzger J O, et al. Castor oil as a renewable resource for the chemical industry[J]. European Journal of Lipid Science and Technology, 2010, 112(1): 10-30. |
4 | Zieleniewska M, Leszczyński M K, Kurańska M, et al. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol[J]. Industrial Crops and Products, 2015, 74: 887-897. |
5 | Kurańska M, Prociak A, Kirpluks M, et al. Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil[J]. Industrial Crops and Products, 2015, 74: 849-857. |
6 | Ferri E, Talentino D. Bio-resins from cashew nutshell oil[J]. Reinforced Plastics, 2011, 55(3): 29-31. |
7 | Tanaka R, Hirose S, Hatakeyama H. Preparation and characterization of polyurethane foams using a palm oil-based polyol[J]. Bioresour. Technol., 2008, 99(9): 3810-3816. |
8 | Yang R, Wang B, Xu L, et al. Synthesis and characterization of rigid polyurethane foam with dimer fatty acid-based polyols[J]. Polymer Bulletin, 2019, 76(7): 3753-3768. |
9 | Yang R, Wang B, Li M, et al. Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols[J]. Industrial Crops and Products, 2019, 136: 121-128. |
10 | Gharehbaghi A, Bashirzadeh R, Ahmadi Z. Polyurethane flexible foam fire resisting by melamine and expandable graphite: industrial approach[J]. Journal of Cellular Plastics, 2011, 47(6): 549-565. |
11 | Gupta R K, Kahol P K, Wan X, et al. Biobased polyols using thiol-ene chemistry for rigid polyurethane foams with enhanced flame-retardant properties[J]. Journal of Renewable Materials, 2017, 5(1): 1-12. |
12 | Choi S W, Ohba S, Brunovska Z, et al. Synthesis, characterization and thermal degradation of functional benzoxazine monomers and polymers containing phenylphosphine oxide[J]. Polymer Degradation and Stability, 2006, 91(5): 1166-1178. |
13 | Zima V, Svoboda J, Beneš L, et al. Synthesis and characterization of new strontium 4-carboxyphenylphosphonates[J]. Journal of Solid State Chemistry, 2007, 180(3): 929-939. |
14 | Nazir R, Gaan S. Recent developments in P (O/S) -N containing flame retardants[J]. Journal of Applied Polymer Science, 2020, 137(1): 47910. |
15 | Bai Y, Wang X, Wu D. Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15064-15074. |
16 | Wen P, Tai Q, Hu Y, et al. Cyclotriphosphazene-based intumescent flame retardant against the combustible polypropylene[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 8018-8024. |
17 | Mayer-Gall T, Knittel D, Gutmann J S, et al. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9349-9363. |
18 | Xu J, He Z, Wu W, et al. Study of thermal properties of flame retardant epoxy resin treated with hexakis[p-(hydroxymethyl) phenoxy]cyclotriphosphazene[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1341-1350. |
19 | Chen-Yang Y W, Yuan C Y, Li C H, et al. Preparation and characterization of novel flame retardant (aliphatic phosphate) cyclotriphosphazene-containing polyurethanes[J]. Journal of Applied Polymer Science, 2003, 90(5): 1357-1364. |
20 | Zhao B, Liang W J, Wang J S, et al. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin[J]. Polymer Degradation and Stability, 2016, 133: 162-173. |
21 | Liang W, Zhao B, Zhao P, et al. Bisphenol-S bridged penta (anilino) cyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability, 2017, 135: 140-151. |
22 | Modesti M, Zanella L, Lorenzetti A, et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes[J]. Polymer Degradation and Stability, 2005, 87(2): 287-292. |
23 | 李雄杰, 何英杰, 邹国享, 等. 六 (γ-氨丙基硅烷三醇) 环三磷腈的制备及其在膨胀阻燃聚丙烯中的应用[J]. 复合材料学报, 2017, 34(6): 1221-1229. |
Li X J, He Y J, Zou G X, et al. Synthesis of hexakis (γ-aminopropylsilanetriol) cyclotriphosphazene and application in intumescent flame retardant polypropylene[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1221-1229. | |
24 | Xu M J, Xu G R, Leng Y, et al. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins[J]. Polymer Degradation & Stability, 2016, 123: 105-114. |
25 | Qian L J, Ye L J, Xu G Z, et al. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups[J]. Polymer Degradation and Stability, 2011, 96(6): 1118-1124. |
26 | Yang R, Hu W, Xu L, et al. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate[J]. Polymer Degradation & Stability, 2015, 122: 102-109. |
27 | Yang R, Wang B, Han X, et al. Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate[J]. Polymer Degradation and Stability, 2017, 144: 62-69. |
28 | 杨荣, 乔红, 胡文田, 等. 反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫[J]. 化工学报, 2016, 67(5): 2169-2175. |
Yang R, Qiao H, Hu W T, et al. Synthesis, physical-mechanical properties and fire behaviors of polyurethane foam with reactive flame retardant and expandable graphite[J]. CIESC Journal, 2016, 67(5): 2169-2175. | |
29 | 胡文田, 杨荣, 许亮, 等. 基于环三磷腈/磷酸酯反应型磷-氮阻燃剂的合成、热降解及应用[J]. 化工学报, 2015, 66 (5): 1976-1982. |
Hu W T, Yang R, Xu L, et al. Synthesis, properties and application of reactive nitrogen-phosphorus flame retardant[J]. CIESC Journal, 2015, 66 (5): 1976-1982. | |
30 | Schartel B, Hull T R. Development of fire-retarded materials-interpretation of cone calorimeter data[J]. Fire and Materials: an International Journal, 2007, 31(5): 327-354. |
31 | Liu Y L, Hsiue G H, Lan C W, et al. Flame-retardant polyurethanes from phosphorus-containing isocyanates[J]. Journal of Polymer Science Part A Polymer Chemistry, 1997, 35(9): 1769-1780. |
[1] | 徐巾超, 陈勇, 叶辉青, 张杰, 张霁, 罗忠华. 罗沙司他共晶的合成、表征与理化性质研究[J]. 化工学报, 2020, 71(4): 1851-1858. |
[2] | 赵少飞, 刘鹏, 李婉萍, 曾小红, 钟远红, 余林, 曾华强. 一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究[J]. 化工学报, 2020, 71(4): 1836-1843. |
[3] | 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397. |
[4] | 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878. |
[5] | 原野, 王明, 周云琪, 王志, 王纪孝. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450. |
[6] | 田亚晓, 王乃用, 李常兴, 杜文静. 泡沫镍板冷却特性的实验研究及数值模拟[J]. 化工学报, 2019, 70(S1): 79-85. |
[7] | 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92. |
[8] | 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114. |
[9] | 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210. |
[10] | 陈燕饶, 毛桃嫣, 郑成. 双十八烷基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2019, 70(S1): 226-234. |
[11] | 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247. |
[12] | 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14. |
[13] | 王海军, 王露雨, 马明明, 万里强, 黄发荣. 新型聚三唑酯和聚三唑醚树脂的合成及性能[J]. 化工学报, 2019, 70(9): 3527-3536. |
[14] | 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336. |
[15] | 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411. |
|