化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1791-1801.doi: 10.11949/0438-1157.20190997

• 能源和环境工程 • 上一篇    下一篇

铁碳微电解处理印染废水的效能及机理研究

贾艳萍1(),张真1,佟泽为2,王嵬1,张兰河1()   

  1. 1.东北电力大学化学工程学院,吉林省 吉林市 132012
    2.长春工程学院能源动力工程学院,吉林 长春 130012
  • 收稿日期:2019-09-03 修回日期:2019-10-31 出版日期:2020-04-05 发布日期:2019-12-03
  • 通讯作者: 张兰河 E-mail:jiayanping1111@sina.com;zhanglanhe@163.com
  • 作者简介:贾艳萍(1973—),女,博士,教授,jiayanping1111@sina.com
  • 基金资助:
    国家自然科学基金项目(51678119);吉林省科技发展计划项目(20180201016SF);吉林省教育厅“十三五”科学技术研究项目(JJKH20180454KJ)

Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater

Yanping JIA1(),Zhen ZHANG1,Zewei TONG2,Wei WANG1,Lanhe ZHANG1()   

  1. 1.School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
    2.School of Energy and Power Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, China
  • Received:2019-09-03 Revised:2019-10-31 Online:2020-04-05 Published:2019-12-03
  • Contact: Lanhe ZHANG E-mail:jiayanping1111@sina.com;zhanglanhe@163.com

摘要:

针对印染废水色度高、成分复杂、难降解等问题,利用铁碳微电解工艺处理该废水,提高其可生化性和处理效率。考察初始pH、铁投加量、铁/碳质量比及反应时间对工艺的影响,通过扫描电子显微镜(SEM)、红外光谱、X射线能谱(EDS)及X射线衍射(XRD)分析反应前后铁碳结构的变化,采用Zeta电位和紫外可见光谱等对比废水处理前后有机物成分的变化,探究印染废水的降解机理。结果表明:在初始pH为4、铁投加量为80 g/L、铁/碳质量比为0.8及反应时间为90 min时,COD、浊度、色度、氨氮和TOC去除率分别为75.48%、87.88%、75.34%、92.01%和81.09%。反应前铁碳反应器的成分以Fe、C为主,活性炭的孔隙结构发达,反应后铁碳表面附着Al、K等其他金属物质和铁的氢氧化物絮体。铁碳微电解工艺可降解酯、醇类有机物为小分子物质,提高废水可生化性。

关键词: 铁碳微电解, 废水, 优化设计, 降解, 机理

Abstract:

Aiming at the problems of high chroma, complex composition, and difficult degradation of printing and dyeing wastewater, the iron-carbon micro-electrolysis process is used to treat the wastewater to improve its biodegradability and treatment efficiency. The effect of initial pH, iron dosage, iron/carbon mass ratio and reaction time on the treatment efficiency of dyeing wastewater was investigated. Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) were used to analyze the changes in the compositions of iron and carbon before and after the treatment of dyeing wastewater. Zeta potential and UV-Vis spectra were used to compare the changes of organic matter before and after wastewater treatment, and the degradation mechanism of dyeing wastewater was explored. Under the initial pH 4, the iron dosage of 80 g/L, the iron-carbon molar ratio of 0.8 and the reaction time of 90 min, the removal efficiencies of COD, turbidity, chroma, ammonia nitrogen and TOC were 75.48%, 87.88%, 75.34%, 92.01% and 81.09%, respectively. Before the treatment of dyeing wastewater, the composition of the iron-carbon reactor was mainly composed of iron and carbon, and the pore structure of the activated carbon was developed. After the reaction, the surface of the iron carbon adhered to other metal substances such as Al, K and the hydroxide flocs of iron. The iron-carbon micro-electrolysis process can degrade esters, alcohols and organic substances, decompose macromolecular substances and improve the biodegradability of wastewater.

Key words: iron-carbon micro-electrolysis, wastewater, optimal design, degradation, mechanism

中图分类号: 

  • X 523

图1

初始pH对污染物去除率的影响"

图2

铁投加量对污染物去除率的影响"

图3

铁/碳质量比对污染物去除率的影响"

图4

反应时间对污染物去除率的影响"

图5

反应前后铁、碳表面形貌"

图6

反应前后铁、碳表面EDS分析"

图7

反应前后铁、碳XRD分析"

图8

紫外可见光谱图a—进水;b—出水"

图9

进出水红外光谱图a—进水; b—出水"

图10

进出水三维荧光光谱图"

图11

进出水气-质联用谱图"

1 邹骏华. 印染废水为主的污水处理厂锑污染特征及吸附处理工艺研究[D]. 杭州: 浙江大学, 2017.
Zou J H. Study on pollution characteristics and adsorption process in dyeing wastewater treatment plant[D]. Hangzhou: Zhejiang University, 2017.
2 Alalewi A, Jiang C. Bacterial influence on textile wastewater decolorization[J]. Journal of Environmental Protection, 2012, 3(28): 889-903.
3 王建坤, 郭晶, 张昊, 等. 阳离子淀粉染料吸附材料的制备及表征[J]. 化工学报, 2017, 68(5): 2112-2121.
Wang J K, Guo J, Zhang H, et al. Synthesis and characterization of cationic starch dye adsorbing material[J]. CIESC Journal, 2017, 68(5): 2112-2121.
4 游东辉, 程治良, 李敢, 等. 新型酞菁催化剂的制备及降解染料性能[J]. 化工学报, 2018, 69(12): 5090-5099.
You D H, Cheng Z L, Li G, et al. Preparation and catalytic degradation property research of novel phthalocyanine[J]. CIESC Journal, 2018, 69(12): 5090-5099.
5 Ning X A, Wen W B, Zhang Y P. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment[J]. Journal of Environmental Management, 2015, 161(15): 181-187.
6 张锐, 李敏, 周天旭, 等. 新型温敏超滤膜处理印染废水的研究[J]. 化工学报, 2018, 69(11): 4910-4917.
Zhang R, Li M, Zhou T X, et al. Treatment of printing and dyeing wastewater with novel temperature-responsive ultrafiltration membrane[J]. CIESC Journal, 2018, 69(11): 4910-4917.
7 Bae W, Han D, Kim E, et al. Enhanced bioremoval of refractory compounds from dyeing wastewater using optimized sequential anaerobic/aerobic process[J]. International Journal of Environmental Science and Technology, 2016, 13(7): 1675-1684.
8 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94.
Ren N Q, Zhou X J, Guo W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94.
9 冯勇, 吴德礼, 马鲁铭. 结构态亚铁羟基化合物还原预处理印染废水的效果和机制[J]. 化工学报, 2011, 62(7): 2033-2041.
Feng Y, Wu D L, Ma L M. Reductive pretreatment of printing and dyeing wastewater by ferrous hydroxy complex[J]. CIESC Journal, 2011, 62(7): 2033-2041.
10 徐昆. 通过优化订单调度提高棉针织印染废水回用效率研究[D]. 北京: 清华大学, 2016.
Xu K. Study on high reuse efficiency of cotton knitting dyeing wastewater by optimization order scheduling[D]. Beijing: Tsinghua University, 2016.
11 张庆云, 谢学辉, 柳建设. 微生物共代谢处理印染废水研究进展[J]. 化工进展, 2017, 36(9): 3492-3501.
Zhang Q Y, Xie X H, Liu J S. Research overview of microbial co-metabolism on printing and dyeing wastewater treatment[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3492-3501.
12 谢学辉, 朱玲玉, 刘娜, 等. 印染废水处理功能菌研究进展[J]. 化工进展, 2015, 34(2): 554-560.
Xie X H, Zhu L Y, Liu N, et al. Progress of functional bacteria in printing and dyeing wastewater: biological treatment[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 554-560.
13 俸志荣, 焦纬洲, 刘有智, 等. 铁碳微电解处理含硝基苯废水[J]. 化工学报, 2015, 66(3): 1150-1155.
Feng Z R, Jiao W Z, Liu Y Z, et al. Treatment of nitrobenzene-containing wastewater by iron-carbon micro-electrolysis[J]. CIESC Journal, 2015, 66(3): 1150-1155.
14 王毅博, 冯民权, 刘永红, 等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展, 2018, 37(8): 3188-3196.
Wang Y B, Feng M Q, Liu Y H, et al. Recent advances on iron-carbon micro-electrolysis technology for refractory wastewater[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3188-3196.
15 宋忠忠. 新型铁碳微电解材料的研发及应用研究[D]. 兰州: 兰州交通大学, 2018.
Song Z Z. Research and application of a new type of iron carbon micro electrolysis material[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
16 罗剑非. 铁碳微电解预处理DMAC废水实验研究[D]. 武汉: 武汉科技大学, 2018.
Luo J F. Iron carbon inner electrolysis process experimental study of DMAC wastewater treatment[D]. Wuhan: Wuhan University of Science and Technology, 2018.
17 Stieber M, Putschew A, Jekel M. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron-kinetic studies and assessment of transformation products assay[J]. Environmental Science & Technology, 2011, 45(11): 4944-4950.
18 曾超. 铁碳微电解-混凝深度处理印染废水作用机制研究[D]. 上海: 东华大学, 2015.
Zeng C. Research on mechanism of advanced treatment of dyeing wastewater via Fe-C micro-electrosis-coagulation[D]. Shanghai: Donghua University, 2015.
19 Segura Y, Martínez F, Melero J A. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron[J]. Applied Catalysis B: Environmental, 2013, 136: 64-69.
20 Lai B, Zhou Y X, Qin H K, et al. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by micro-electrolysis[J]. Chemical Engineering Journal, 2010, 179(1): 1-7.
21 Vijayalakshmi G, Bhola R G, Rao Y S, et al. Treatment of pyridine-bearing wastewater by nano zero-valent iron supported on activated carbon derived from agricultural waste[J]. Desalination and Water Treatment, 2015, 57(14): 1-11.
22 Azzam A M, EI-Wakeel S T, Mostafa B B, et al. Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2196-2206.
23 王悦. 铁碳微电解系统的性能及优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
Wang Y. Research and optimization of performance of iron-carbon microelectrolysis[D]. Harbin: Harbin Engineering University, 2017.
24 余丽胜, 焦纬洲, 刘有智, 等. 超声强化铁碳微电解-Fenton法降解硝基苯废水[J]. 化工学报, 2017, 68(1): 297-304.
Yu L S, Jiao W Z, Liu Y Z, et al. Degradation of nitrobenzene wastewater under Fe0/GAC-Fenton enhanced by ultrasound[J]. CIESC Journal, 2017, 68(1): 297-304.
25 贾艳萍, 张真, 毕朕豪, 等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展, 2020, 39(2): 790-797.
Jia Y P, Zhang Z, Bi Z H, et al. Efficiency and biological toxicity of iron-carbon microelectrolysis in the treatment of dyeing wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 790-797.
26 Ying D W, Peng J, Xu X Y, et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron[J]. Hazard. Mater., 2012, 229/230(5): 426-433.
27 张龙龙. 新型陶粒基铁碳微电解-UAF-UBAF组合工艺处理环丙沙星废水研究[D]. 济南: 山东大学, 2018.
Zhang L L. Application of the combined Fe-C micro-electrolysis and anaerobic-aerobic bio-filter with novel ceramics for ciprofloxacin wastewater treatment[D]. Jinan: Shandong University, 2018.
28 Xu X Y, Cheng Y, Zhang T T, et al. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation[J]. Chemosphere, 2016, 152: 23-30.
29 郑敏. 铁碳微电解对垃圾渗滤液生化出水水质改善研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Zheng M. Study on improvement of biochemical effluent quality of landfill leachate by iron-carbon micro-electrolysis[D]. Harbin: Harbin Institute of Technology, 2017.
30 罗发生. 铁碳微电解絮凝-耦合法处理铅锌冶炼废水[D]. 昆明: 昆明理工大学, 2011.
Luo F S. The treatment of lead and zinc smelting wastewater by Fe-C micro-electrolysis and flocculation[D]. Kunming: Kunming University of Science and Technology, 2011.
31 杨怡. 三维电极耦合铁碳微电解处理高浓度难降解有机废水[D]. 南昌: 南昌大学, 2017.
Yang Y. The research on the treatment of concentrated and hard-decompose organic wastewater by three-dimensional electrode coupling iron-carbon micro electrolysis[D]. Nanchang: Nanchang University, 2017.
32 张颖. FeEDTA络合吸收脱硝液的铁碳微电解再生性能与机理[D]. 湘潭: 湘潭大学, 2017.
Zhang Y. Performance and mechanism of FeEDTA denitrification solution regeneration by iron-active carbon microelectrolysis[D]. Xiangtan: Xiangtan University, 2017.
33 Wang Y, Han K T, Wu H, et al. Removal of phosphorus from wastewaters using ferrous salts a pilot scale membrane bioreactor study[J]. Water Research, 2014, 57(15): 140-150.
34 王喜全. 微电解-Fenton氧化法处理染料废水及其降解历程的研究[D]. 沈阳: 东北大学, 2011.
Wang X Q. Study on treatment of dye wastewater by combined process using micro-electrolysis and Fenton oxidation and the investigation of the reaction mechanism[D]. Shenyang: Northeastern University, 2011.
35 范功端, 林修咏, 王书敏, 等. 生物滞留系统间隙水DOM三维荧光光谱特征分析[J]. 光谱学与光谱分析, 2018, 38(4): 1139-1145.
Fan G D, Lin X Y, Wang S M, et al. Compositional characteristics of interstitial water dissolved organic matter in bioretention systems with different filling[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1139-1145.
36 张晓燕. 基于三维荧光光谱的饮用水有机物定性判别方法研究[D]. 杭州: 浙江大学, 2018.
Zhang X Y. Research on the qualitative determination of drinking water organic contaminant based on three-dimensional fluorescence spectroscopy[D]. Hangzhou: Zhejiang University, 2018.
37 Swietlik J, Dabrowska A, Raczykstanistawiak U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(3): 547-558.
[1] 万豫, 张敏, 翁云宣, 李成涛. 酵母菌的致孔作用对PVA/CMC水凝胶性能的影响[J]. 化工学报, 2020, 71(4): 1828-1835.
[2] 李文秀, 张羽, 曹颖, 丁忠瀚, 赵思雨, 张弢. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682.
[3] 龚志明, 王瑞祥, 邢美波. 全氟烷基表面活性剂吸附特性研究[J]. 化工学报, 2020, 71(4): 1754-1761.
[4] 焦昭杰, 陈立功, 柳云骐, 张贤明, 龚海峰, 高旭. CuCe氧化物催化剂的制备及CWPO降解双酚A废水研究[J]. 化工学报, 2020, 71(4): 1646-1656.
[5] 刘艳奇, 何路东, 廉培超, 陈鑫智, 梅毅. 黑磷烯稳定性增强研究进展[J]. 化工学报, 2020, 71(3): 936-944.
[6] 林帝出, 杨佳薇, 邓玉莹, 戴敏, 郑西来, 彭昌盛. 滴定-凝胶法制备球形水凝胶吸附材料及其在废水处理中的应用[J]. 化工学报, 2020, 71(3): 914-922.
[7] 王柯晴, 徐劼, 沈芷璇, 陈家斌, 吴玮. LaCoO3钙钛矿活化过一硫酸盐降解萘普生[J]. 化工学报, 2020, 71(3): 1326-1334.
[8] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[9] 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
[10] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[11] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
[12] 吴涵, 陈滢, 刘敏, 王淑莹, 张伟. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766-776.
[13] 桂成敏, 朱瑞松, 张傑, 雷志刚. 离子液体气体干燥技术的研究进展[J]. 化工学报, 2020, 71(1): 92-105.
[14] 张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353.
[15] 杨铃,郑成,李镇明. 微波协同离子液体催化合成柠檬酸三丁酯[J]. 化工学报, 2019, 70(S2): 287-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[2] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[3] . 2013年 第64卷 第1期目 次[J]. 化工学报, 2013, 64(1): 0 .
[4] 赵德明, 李敏, 徐新华. 高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯[J]. 化工学报, 2013, 64(3): 1091 -1098 .
[5] 张弦, 罗才武, 黄登高, 李安, 刘娟娟, 晁自胜. 醛/氨反应合成吡啶碱机理[J]. 化工学报, 2013, 64(8): 2875 -2882 .
[6] 石书柳,吴丽梅,廖立兵. 赤铁矿对模拟污水中重金属铬(Ⅵ)离子的吸附及固定化[J]. 化工进展, 2013, 32(08): 1949 -1954 .
[7] 何大方, 吴健, 刘战剑, 沈丽明, 汪怀远, 暴宁钟. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888 -2894 .
[8] 张沁丹, 付涛涛, 朱春英, 马友光. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504 -511 .
[9] 赵金龙, 黄弘, 李聪, 王建军. 基于事件链的罐区定量风险评估[J]. 化工学报, 2016, 67(7): 3084 -3090 .
[10] 陈振涛, 武云, 徐春明. 零长柱技术用于分子筛晶内扩散的研究进展[J]. 化工学报, 2016, 67(8): 3170 -3178 .