化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1424-1431.doi: 10.11949/0438-1157.20190994

• 热力学 • 上一篇    下一篇

甲烷水合物声子导热及量子修正

刘明1(),徐哲2   

  1. 1.胜利油田分公司石油工程技术研究院,山东省稠油开采技术重点实验室,山东 东营 257000
    2.中国石油大学(华东)新能源学院,山东 青岛 266580
  • 收稿日期:2019-09-02 修回日期:2019-12-26 出版日期:2020-04-05 发布日期:2020-01-11
  • 通讯作者: 刘明 E-mail:upclm@sina.com
  • 作者简介:刘明(1976—),男,高级工程师,upclm@sina.com
  • 基金资助:
    中石化科技攻关项目(P19005-4)

Phonon heat conduction and quantum correction of methane hydrate

Ming LIU1(),Zhe XU2   

  1. 1.Petroleum Engineering and Technology Institute of Shengli Oilfield Branch, the Shandong Provincial Key Laboratory of Heavy Oil Recover, Dongying 257000, Shandong, China
    2.Institute of New Energy, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2019-09-02 Revised:2019-12-26 Online:2020-04-05 Published:2020-01-11
  • Contact: Ming LIU E-mail:upclm@sina.com

摘要:

采用平衡分子动力学方法模拟了甲烷水合物的导热,给出了30~150 K甲烷水合物的热导率。采用量子修正对分子模拟结果进行处理,可以得到更接近实验值的结果。当模拟温度低于德拜温度时,量子效应对分子模拟结果的影响较大。通过对热流自相关函数拟合得到了声学声子和光学声子的弛豫时间。结果显示,声子弛豫时间随温度增加逐渐减小,声学声子导热在水合物的导热中比重最大。随着碳氧原子之间相互作用力的增加,碳氧原子之间振动的耦合程度增加,甲烷水合物的热导率增加。

关键词: 甲烷水合物, 分子动力学, 热导率, 声子模式分解, 量子修正

Abstract:

The equilibrium molecular dynamics method was used to simulate the thermal conductivity of methane hydrate, and the thermal conductivity of 30—150 K methane hydrate was given. The studies of thermal transport in hydrate have a lot of significance in hydrate exploitation and gas hydrate storage and transport. In this paper, an equilibrium molecular dynamics simulation for 2×2×2 type I methane hydrate periodic structure is carried out by LAMMPS and the thermal transport process is analyzed. For methane hydrate, CH4 is modeled as OPLS-UA type while H2O is treated by TIP4P/2005 model. The intermolecular interactions are described by the Lennard-Jones potential function and a Coulombic pairwise interaction. During the simulation, the methane hydrate is successively placed into NVT and NPT ensembles to relax for 1 ns respectively, so as to equilibrate the whole system. Then, it is transferred into NVE ensemble to run 2 ns for calculating the thermal conductivity. The thermal conductivity which is much closer to experiments results can be obtained by quantum correlation. When the simulation temperature is lower than Debye temperature, the quantum effect has a great influence on the molecular simulation results. The relaxation time of acoustic phonons and optical phonons are calculated by fitting the autocorrelation function of heat flow. The results show that the phonon relaxation time decreases with the increase of temperature and the acoustic phonon contributes most to heat conductivity. With the increase of the interaction strength between carbon and oxygen atoms, the coupling of vibration between carbon and oxygen atoms becomes stronger, and the thermal conductivity of methane hydrate increases.

Key words: methane hydrate, molecular dynamics simulation, thermal conductivity, phonon modes decomposition, quantum correction

中图分类号: 

  • O 551

图1

甲烷水合物模拟结构"

图2

量子修正温度和分子模拟温度"

图3

量子修正系数"

图4

量子修正后的热导率"

图5

弛豫时间拟合"

表1

声子弛豫时间和光学模式峰值频率"

T/Kτsh,ac/psτint,ac/psτlg,ac/psτsh,opt/psτlg,opt/ps

ω/

(rad·s-1)

300.4114.950.05460.968172.45
500.22.330.05390.685171.82
750.1422.170.05210.570168.68
1000.1331.830.04920.1836166.79
1500.04460.4671.250.04790.1616163.01

图6

热流自相关函数"

图7

热流自相关函数能谱"

图8

量子修正后不同水分子模型下甲烷水合物的热导率"

表2

不同作用力强度下甲烷水合物的热导率"

系数k/(W·m-1·K-1)kww/(W·m-1·K-1)kmm/( W·m-1·K-1)kwm/(W·m-1·K-1)
10.720.660.0070.058
20.740.670.0100.062
30.770.690.0150.066
40.790.700.0230.072

图9

甲烷水合物的态密度图"

图10

态密度重叠区域的能量"

1 Waite W F, Stern L A, Kirby S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. Geophys. J. Int., 2007, 169(2): 767-774.
2 Takeya S, Kida M, Minami H, et al. Structure and thermal expansion of natural gas clathrate hydrate[J]. Chem. Eng. Sci., 2006, 61: 2670-2674.
3 English N J, Macelroy J M D. Structural and dynamical properties of methane clathrate hydrates[J]. J. Comput. Chem., 2003, 24: 1569-1581.
4 万丽华, 梁德青, 吴能友, 等. 客体分子数对甲烷水合物导热性能影响的分子动力学模拟[J]. 化工学报, 2012, 63(2): 382-386.
Wan L H, Liang D Q, Wu N Y, et al. Molecular dynamics simulation on influence of guest molecule number on methane hydrate thermal performance[J]. CIESC Journal, 2012, 63(2): 382-386.
5 周广刚, 孙晓亮, 卢贵武. 温度对甲烷水合物分解影响的分子动力学模拟[J]. 人工晶体学报, 2017, 46(8): 1608-1613.
Zhou G G, Sun X L, Lu G W. Molecular dynamics simulation of temperature effect on methane hydrate decomposition[J]. Journal of Synthetic Crystals, 2017, 46(8): 1608-1613.
6 Inoue R, Tanaka H, Nakanishi K. Molecular dynamics simulation study of the anomalous thermal conductivity of clathrate hydrates[J]. Chem. Phys., 1996, 104(23): 9569-9577.
7 Schober H, Itoh H, Klapproth A, et al. Guest-host coupling and anharmonicity in clathrate hydrates[J]. Eur. Phys. J. E, 2003, 12(1): 41-49.
8 Ning F, Glavatskiy K, Ji Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations[J]. Phys. Chem. Chem. Phys., 2014, 17(4): 2869-2883.
9 Chialvo A A, Houssa M, Cummings P T. Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates[J]. J. Phys. Chem. B, 2002, 106(2): 442-451.
10 Rosenbaum E J, English N J, Johnson J K, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation[J]. J. Phys. Chem. B, 2007, 111(46): 13194-13205.
11 Jiang H, Myshakin E M, Jordan K D, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate[J]. J. Phys. Chem. B, 2008, 112(33): 10207-10216.
12 Jiang H, Jordan K D. Comparison of the properties of xenon, methane, and carbon dioxide hydrates from equilibrium and nonequilibrium molecular dynamics simulations[J]. J. Phys. Chem. C, 2009, 114(12): 5555-5564.
13 Krivchikov A I, Gorodilov B Y, Korolyuk O A, et al. Thermal conductivity of Xe clathrate hydrate at low temperatures [J]. Phys. Rev. B, 2006, 73: 064203.
14 Tse J S, White M A. Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate[J]. J. Phys. Chem., 1988, 92(17): 5006-5011.
15 Koza M M, Johnson M R, Viennois R, et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites[J]. Nat. Mater., 2008, 7(10): 805-810.
16 English N J, John S T, Carey D J. Mechanisms for thermal conduction in various polymorphs of methane hydrate[J]. Phys. Rev. B, 2009, 80(13): 134306.
17 Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1): 1-19.
18 Bugel M, Galliero G. Thermal conductivity of the Lennard-Jones fluid: an empirical correlation[J]. Chem. Phys., 2008, 352(1): 249-257.
19 Luty B A, van Gunsteren W F. Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions[J]. J. Phys. Chem., 1996, 100(7): 2581-2587.
20 Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. J. Chem. Phys., 1995, 103(19): 8577-8593.
21 Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. J. Chem. Phys., 1984, 81(1): 511-519.
22 Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Phys. Rev. A, 1985, 31(3): 1695-1697.
23 Lukes J R, Zhong H. Thermal conductivity of individual single-wall carbon nanotubes[J]. J. Heat Transfer, 2007, 129(6): 705-716.
24 Krivchikov A I, Gorodilov B Y, Korolyuk O A, et al. Thermal conductivity of methane-hydrate[J]. J. Low Temp. Phys., 2005, 139(5/6): 693-702.
25 姚贵策, 苑昆鹏, 吴硕, 等. 独立探头3ω法表征甲烷水合物热导率和热扩散率[J]. 化工学报, 2016, 67(5): 1665-1672.
Yao G C, Yuan K P, Wu S, et al. Characterizing of thermal conductivity and thermal diffusivity of methane hydrate by free-standing sensor 3ω method[J]. CIESC Journal, 2016, 67(5): 1665-1672.
26 Cook J G, Leaist D G. An exploratory study of the thermal conductivity of methane hydrate[J]. Geophys. Res. Lett., 1983, 10(5): 397-399.
27 Ladd A J C, Moran B, Hoover W G. Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics[J]. Phys. Rev. B, 1986, 34(8): 5058-5064.
28 McGaughey A J H, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations(Part Ⅰ): Lennard-Jones argon [J]. Int. J. Heat Mass Transfer, 2004, 47(8): 1783-1798.
29 McGaughey A J H, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations(Part Ⅱ): Complex silica structures[J]. Int. J. Heat Mass Transfer, 2004, 47(8): 1799-1816.
30 English N J, Tse J S. Mechanisms for thermal conduction in methane hydrate[J]. Phys. Rev. Lett., 2009, 103: 015901.
31 Greathouse J A, Cygan R T, Simmons B A. Vibrational spectra of methane clathrate hydrates from molecular dynamics simulation[J]. J. Phys. Chem. B, 2006, 110(13): 6428-6431.
32 Wang Z L, Yuan K P, Tang D W. Thermal transport in methane hydrate by molecular dynamics and phonon inelastic scattering[J]. Chin. Phys. Lett., 2015, 32(10): 104401.
[1] 文爽, 齐宏, 刘少斌, 任亚涛, 阮立明. 基于EKF和UKF算法非均匀介质热物性参数重建[J]. 化工学报, 2020, 71(4): 1432-1439.
[2] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[3] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[4] 周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165.
[5] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[6] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[7] 侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[8] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[9] 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
[10] 徐国稳, 李坤, 蒋祎璠, 黄明骏, 房东旭, 蔡姗姗. 三类随机分形结构下干土壤有效热导率的介观研究[J]. 化工学报, 2019, 70(7): 2496-2502.
[11] 陈巨辉, 韩坤, 王帅, 李铭坤, 陈纪元, 马明. 基于反扰动非平衡分子动力学的纳米流体导热增强机理研究[J]. 化工学报, 2019, 70(6): 2147-2152.
[12] 刘万强, 陆海霞, 刘凤萍, 陈冠凡, 胡田, 岳明, 仇明华. 应用势能极小原理有限元解法的一元醇液体热导率估算[J]. 化工学报, 2019, 70(4): 1245-1254.
[13] 郑禾, 杨盛江, 郑永超, 崔燕, 郭旋, 钟近艺, 周健. 尿素和二甲基亚砜诱导DhaA变性的分子动力学模拟[J]. 化工学报, 2019, 70(11): 4337-4345.
[14] 齐畅, 卢滇楠, 刘永民. 优化温度相关力场预测正构烷烃热力学性质[J]. 化工学报, 2018, 69(8): 3338-3347.
[15] 孙琦, 陈曦, 谢荣建, 张畅, 吴亦农. 环路热管中Ti64ELI毛细芯传热能力的实验研究[J]. 化工学报, 2018, 69(4): 1391-1397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 官月平,姜波,朱星华,刘会洲. 生物磁性分离研究进展(Ⅰ)磁性载体制备和表面化学修饰 [J]. CIESC Journal, 2000, 51(S1): 315 -319 .
[2] 薛屏, 刘海峰, 杨金会. 亲水性环氧聚合物磁性微球的制备及其固定化青霉素酰化酶 [J]. 化工学报, 2008, 59(2): 443 -449 .
[3] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[4] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[5] 邓先和,邓颂九. 管间支撑物的结构对横纹槽管管束传热强化性能的影响 [J]. CIESC Journal, 1992, 43(1): 62 -68 .
[6] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[7] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[8] 郑大庆,HelmutKnapp. 含强缔合氟化氢体系的热力学模型 [J]. CIESC Journal, 1997, 48(1): 28 -34 .
[9] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[10] 钱新明;徐亚博;刘振翼.

球罐BLEVE碎片抛射的Monte-Carlo分析

[J]. CIESC Journal, 2009, 60(4): 1057 -1061 .