化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1712-1722.doi: 10.11949/0438-1157.20190992

• 表面与界面工程 • 上一篇    下一篇

上游泵送机械密封润滑膜固体颗粒沉积特性研究

陈汇龙(),桂铠(),韩婷,谢晓凤,陆俊成,赵斌娟   

  1. 江苏大学能源与动力工程学院,江苏 镇江 212013
  • 收稿日期:2019-09-02 修回日期:2019-11-02 出版日期:2020-04-05 发布日期:2019-12-07
  • 通讯作者: 桂铠 E-mail:huji@ujs.edu.cn;603339928@qq.com
  • 作者简介:陈汇龙(1961—),男,博士,教授,huji@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(51976078)

Study on deposition characteristics of solid particles in lubricating film of upstream pumping mechanical seal

Huilong CHEN(),Kai GUI(),Ting HAN,Xiaofeng XIE,Juncheng LU,Binjuan ZHAO   

  1. School of Engery and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2019-09-02 Revised:2019-11-02 Online:2020-04-05 Published:2019-12-07
  • Contact: Kai GUI E-mail:huji@ujs.edu.cn;603339928@qq.com

摘要:

上游泵送机械密封运行中常因固体颗粒沉积而出现动压槽堵塞失效现象,为了对微间隙润滑膜固体颗粒沉积特性进行研究,建立了密封润滑膜三维几何模型和气液固多相流计算模型,应用Mixture模型和DPM模型模拟研究了不同颗粒直径、转速、介质压力、颗粒进口体积分数和润滑膜厚度对固体颗粒沉积特性的影响规律。研究表明:来自润滑膜内径侧固体颗粒的沉积率及沉积区域均与颗粒直径、颗粒进口体积分数、密封工况和润滑膜厚度等参数有关,粒径较小、转速增大、介质压力增大和膜厚减小有利于降低颗粒沉积率;螺旋槽低压区是颗粒沉积的主要部位,且粒径、颗粒进口体积分数、转速和膜厚增大,介质压力降低,使沉积区域明显向外槽根拓展,这是螺旋槽易出现堵塞失效的原因;低转速时易在坝区出现颗粒沉积,非槽区的沉积颗粒呈周向分布。

关键词: 上游泵送机械密封, 润滑膜, 固体颗粒, 沉积特性, 流体力学, 多相流, 数值模拟

Abstract:

During the operation of upstream pumping mechanical seal, the dynamic pressure groove blockage often occurs due to the deposition of solid particles. To study the solid particle deposition characteristics of the micro-gap lubricant film, a three-dimensional geometric model of the seal lubricant film and a gas-liquid-solid multi-phase flow calculation model were established. The Mixture model and DPM model were applied to study the different particle diameter, rotational speed, medium pressure, particle import volume fraction and the lubrication film thickness on the influence of solid particle deposition characteristics. The results show that the deposition rate and deposition area of solid particles from the inner diameter side of the lubrication film are related to the particle diameter, particle import volume fraction, sealing condition and lubrication film thickness. Smaller particle size, larger rotating speed, larger medium pressure and smaller film thickness are beneficial to lower particle deposition rate. The low-pressure area of spiral groove is the main part of particle deposition. With the increase of particle diameter, particle import volume fraction, rotating speed and film thickness, medium pressure decreases and the deposition area obviously extends outward to the root of the groove, which is the reason why the spiral groove is prone to blockage and failure. Particle deposition is easy to occur in dam area and particles in the non-slot area are circumferentially distributed at low rotating speed.

Key words: upstream pumping mechanical seal, lubricating film, solid particles, deposition characteristics, fluid mechanics, multiphase flow, numerical simulation

中图分类号: 

  • TH 117. 2

图1

机械密封端面螺旋槽造型"

图2

端面润滑膜三维模型"

图3

网格无关性检验"

图4

1/Ng润滑膜网格及边界条件"

图5

计算流程图"

图6

固体颗粒沉积数量模拟结果对比"

图7

连续相流场计算结果"

图8

不同颗粒直径下固体颗粒沉积分布"

图9

颗粒直径对沉积率的影响"

图10

不同转速下固体颗粒沉积分布"

图11

转速对沉积率的影响"

图12

不同介质压力下固体颗粒沉积分布"

图13

介质压力对沉积率的影响"

图14

不同颗粒进口体积分数下固体颗粒沉积分布"

图15

颗粒进口体积分数对沉积率的影响"

图16

不同润滑膜厚度下固体颗粒沉积分布"

图17

润滑膜厚度对沉积率的影响"

1 宋鹏云. 上游泵送机械密封的基本原理分析[J]. 云南化工, 2000, 27(4): 20-22.
Song P Y. Analysis of the fundamentals of upstream pumping mechanical seal[J]. Yunnan Chemical Technology, 2000, 27(4): 20-22.
2 郝木明, 胡丹梅, 杨惠霞. 上游泵送机械密封的研究开发及应用[J]. 流体机械, 2001, 29(2): 13-16.
Hao M M, Hu D M, Yang H X. Research and development and application of upstream pumping mechanical seal[J]. Fluid Machinery, 2001, 29(2): 13-16.
3 孙见君, 魏龙, 顾伯勤. 机械密封的发展历程与研究动向[J]. 润滑与密封, 2004, 7(4): 128-131.
Sun J J, Wei L, Gu B Q. Development course and research trend on the mechanical seal[J]. Lubrication Engineering, 2004, 7(4): 128-131.
4 Yin L Y. Numerical modeling of super cavitation and surface piercing propellers[D]. Texas: University of Texas, 2012.
5 王玉明, 刘伟, 刘莹. 非接触式机械密封基础研究现状与展望[J]. 液压气动与密封, 2011, 31(2): 29-33.
Wang Y M, Liu W, Liu Y. Current research and developing trends on non-contacting mechanical seals[J]. Hydraulics Pneumatics and Seals, 2011, 31(2): 29-33.
6 郝木明, 胡丹梅, 郭洁. 新型上游泵送机械密封的性能研究[J]. 化工机械, 2001, 28(1): 14-17.
Hao M M, Hu D M, Guo J. Research on performance of new upstream pumping mechanical seal[J]. Chemical Machinery, 2001, 28(1): 14-17.
7 左木子. 上游泵送机械密封固液两相润滑的研究[D]. 镇江: 江苏大学, 2015.
Zuo M Z. Study on solid-liquid two-phase lubrication of upstream pumping mechanical seals[D]. Zhenjiang: Jiangsu University, 2015.
8 Neale M J, Gee M. A Guide to Wear Problems and Testing for Industry[M]. New York: John Wiley and Sons Ltd. 2000: 56.
9 陈汇龙, 吴强波, 左木子, 等. 机械密封端面润滑膜空化的研究进展[J]. 排灌机械工程学报, 2015, 33(2): 138-144.
Chen H L, Wu Q B, Zuo M Z, et al. Overview on liquid film cavitaion in mechanical seal faces[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(2): 138-144.
10 Chen H L, Wu Q B, Xu C, et al. Research on cavitation regions of upstream pumping mechanical seal based on dynamic mesh technique[J]. Advances in Mechanical Engineering, 2014, 2014(11): 1-8.
11 Merati P, Parker J. Flow measurements in enlarged-bore seal chambers[J]. Tribology Transactions, 1998, 41(4): 505-512.
12 Azibert H, Clark R. Using CFD to improve performance and extend life of mechanical seals in slurry applications[C]//17th International Conference on Fluid Sealing. BHR Group Limited, 2003: 447-467.
13 Azibert H, Clark R. Improving mechanical seal life and operating efficiency in slurry applications[C]//18th International Conference on Fluid Sealing. BHR Group Limited, 2005: 23-47.
14 赵龙. 泵用机械密封工作环境及其改善方法研究[D]. 昆明: 昆明理工大学, 2009.
Zhao L. Study on working environment and improvement method of mechanical seal for pump[D]. Kunming: Kunming University of Science and Technology, 2009.
15 严彦, 陈卫, 孙见君, 等. 双向自泵送流体动静压型机械密封性能数值模拟[J]. 排灌机械工程学报, 2017, 35(8): 692-699.
Yan Y, Chen W, Sun J J, et al. Numerical simulation of performance for bidirectional self-pumping hydrodynamic-static mechanical seal[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(8): 692-699.
16 Chen Q, Sun J J. Analysis of self-cleaning for self-pumping hydrodynamic and hydrostatic mechanical seal[J]. Tribology, 2019, 39(3): 259-268.
17 彭旭东, 于明彬, 孟祥铠, 等. 端面磨损对U型槽动压机械密封性能的影响[J]. 上海交通大学学报(自然版), 2010, 44(12): 1721-1726.
Peng X D, Yu M B, Meng X K, et al.Effect of face wear on sealing performance of U-grooved mechanical seals[J]. Journal of Shanghai Jiaotong University (Nature Edition), 2010, 44(12): 1721-1726.
18 陈汇龙, 左木子, 吴强波, 等. 上游泵送机械密封润滑膜固液两相流动特性[J]. 排灌机械工程学报, 2015, 33(8): 685-690.
Chen H L, Zuo M Z, Wu Q B, et al. Solid-liquid two-phase flow characteristics of lubricating film in upstream pumping mechanical seal[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(8): 685-690.
19 Chen H L, Sun D D, Wu Y Z, et al. Effect of solid particles on cavitation and lubrication characteristics of upstream pumping mechanical seal liquid membrane[J]. International Journal of Fluid Machinery and Systems, 2017, 10(4): 412-420.
20 孙冬冬. 动压型机械密封微间隙气液固流动特性及密封性能研究[D]. 镇江: 江苏大学, 2018.
Sun D D. Study on the gas-liquid-solid flow characteristics and seal performance on micro-gap of dynamic pressure mechanical seal[D]. Zhenjiang: Jiangsu University, 2018.
21 陈汇龙, 刘玉辉, 刘彤, 等. 基于动网格的上游泵送机械密封性能参数分析[J]. 排灌机械工程学报, 2012, 30(5): 583-587.
Chen H L, Liu Y H, Liu T, et al. Analyzing performance parameters of upstream pumping mechanical seals based on dynamic mesh technique[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(5): 583-587.
22 Khonsari M M, Wang S H, Qi Y L A.Theory of liquid-solid lubfication in elasto hydrodynamic regime[J].Journal of Tribology, 1989, 111(7): 440-444.
23 郝木明, 蔡厚振, 刘维滨, 等. 泵出型螺旋槽机械密封端面间隙气液两相流动数值分析[J]. 中国石油大学学报(自然科学版), 2015, 39(6): 129-137.
Hao M M, Cai H Z, Liu W B, et al. Numerical analysis on gas-liquid two-phase flow of outward pumping spiral-grooved mechanical seal clearance[J]. Journal of China University of Petroleum (Natural Science Edition), 2015, 39(6): 129-137.
24 李昳. 离心泵内部固液两相流动数值模拟与磨损特性研究[D]. 杭州: 浙江理工大学, 2014.
Li Y. The reaearch on numerical simulation and abrasion property of solid-liquid two-phase-flow centrifugal pump[D]. Hangzhou: Zhejiang University of Science and Technology, 2014.
25 赵恩乐.离心式杂质泵内部固液两相湍流场数值计算与磨损分析[D]. 合肥: 合肥工业大学, 2017.
Zhao E L. Numerical simulation and wear analysis of solid-liquid two phase turbulent flow in centrifugal impurity pump[D]. Hefei: Hefei University of Technology, 2017.
26 Al-Athel K S, Gadala M S. Eulerian volume of solid (VOS) approach in solid mechanics and metal forming[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25): 2145-2149.
27 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004: 4-7.
Wang F J. Computational Fluid Dynamics Analysis[M]. Beijing: Tsinghua University Press, 2004: 4-7.
28 赵斌娟, 袁寿其, 刘厚林, 等. 基于Mixture多相流模型计算双流道泵全流道内固液两相湍流[J]. 农业工程学报, 2008, 24(1): 7-12.
Zhao B J, Yuan S Q, Liu H L, et al. Simulation of solid-liquid two-phase turbulent flow in double-channel pump based on Mixture model[J]. Transactions of the CSAE, 2008, 24(1): 7-12.
29 吴玉林. 水力机械空化和固液两相流体动力学[M]. 北京: 中国水力水电出版社, 2007: 31-37.
Wu Y L. Hydraulic Machinery Cavitation and Solid-liquid Two-phase Hydrodynamics[M]. Beijing: China Hydropower Press, 2007: 31-37.
30 Moslemi A, Ahmadi G. Study of the hydraulic performance of drill bits using a computational particle-tracking method[J]. SPE Drilling and Completion, 2014, 29(1): 28-35.
31 Zwart P, Gerber A, Belamri T. A two-phase flow model for predicting cavitation dynamics[C]// Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.
32 Singhal A K, Li H Y, Athavale M M, et al. Mathematical basis and validation of the full cavitation model[C]// ASME FEDSM 01. New Orleans, Louisiana, 2001.
33 吴强波. 液膜润滑动压型机械密封空化特性研究[D]. 镇江: 江苏大学, 2015.
Wu Q B. Study on cavitation characteristics of dynamic pressure mechanical seal with liquid film lubrication[D]. Zhenjiang: Jiangsu University, 2015.
34 潘晓梅, 彭旭东, 骆建国, 等. 激光加工多孔端面机械密封中空化边界条件的比较[J]. 润滑与密封, 2007, 32(2): 47-50.
Pan X M, Peng X D, Luo J G, et al. Comparison of cavitation boundary conditions in analyses of a laser surface textured mechanical seal[J]. Lubrication Engineering, 2007, 32(2): 47-50.
35 吉华, 陈枭, 王彦镐, 等. 倾斜椭圆微孔端面机械密封的回吸现象及对泄漏量影响[J]. 工程科学与技术, 2017, 49(2): 248-253.
Ji H, Chen X, Wang Y H, et al. Outlet suction and leakage of mechanical seal with inclined ellipticaldimples[J]. Advanced Engineering Sciences, 2017, 49(2): 248-253.
36 冯明, 侯冲, 忽敏学, 等. 亚微米级颗粒物在气体动压轴承内运动与沉积分析[J]. 中国惯性技术学报, 2019, 27(2): 227-234.
Feng M, Hou C, Hu M X, et al. Motion and deposition of submicron particles in aerodynamic thrust bearing[J].Journal of Chinese Inertial Technology, 2019, 27(2): 227-234.
[1] 亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
[2] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[3] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[4] 李睿, 张以任, 陈杭, 路贵民, 于建国. 二元液滴自由碰撞聚并后的振荡行为研究[J]. 化工学报, 2020, 71(4): 1482-1490.
[5] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[6] 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
[7] 许峻, 范怡平, 钱筱婕, 闫子涵, 卢春喜. 催化裂化提升管进料段喷嘴射流运动-扩散特性的分析[J]. 化工学报, 2020, 71(4): 1450-1459.
[8] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[9] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[10] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[11] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[12] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[13] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[14] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[15] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[3] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[4] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[5] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[6] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788 -800 .
[7] 陈小艳, 周骛, 蔡小舒, 黄燕, 袁益超. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2): 480 -487 .
[8] 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602 -1606 .
[9] 曹健, 牟鹏, 耿志强, 朱群雄. 工业系统超结构模型应用研究进展[J]. 化工学报, 2017, 68(3): 801 -810 .
[10] 郭志超, 张丽伟, 程素君. 核壳结构α-Fe2O3锂离子电池阳极材料制备及应用[J]. 化工学报, 0, (): 3638 -3644 .