化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1502-1509.doi: 10.11949/0438-1157.20190982

• 流体力学与传递现象 • 上一篇    下一篇

铜基正弦波微通道内流动沸腾传热特性试验研究

姚鑫宇(),程潇,王晗,沈洪,吴慧英,刘振宇()   

  1. 上海交通大学机械与动力工程学院,200240,上海 200240
  • 收稿日期:2019-08-30 修回日期:2020-01-04 出版日期:2020-04-05 发布日期:2020-02-26
  • 通讯作者: 刘振宇 E-mail:yaoxinyu@sjtu.edu.cn;zhenyu.liu@sjtu.edu.cn
  • 作者简介:姚鑫宇(1994—),男,硕士研究生, yaoxinyu@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51676124);上海市国际科技合作基金项目(18160743900)

Experimental investigation on flow boiling heat transfer in sinusoidal wavy copper microchannels

Xinyu YAO(),Xiao CHENG,Han WANG,Hong SHEN,Huiying WU,Zhenyu LIU()   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-08-30 Revised:2020-01-04 Online:2020-04-05 Published:2020-02-26
  • Contact: Zhenyu LIU E-mail:yaoxinyu@sjtu.edu.cn;zhenyu.liu@sjtu.edu.cn

摘要:

基于超快激光技术加工铜基正弦波弯曲型微通道,以去离子水为流动工质,在不同质量流量和热通量条件下,对弯曲型微通道内流动沸腾特性进行试验研究。基于温度/压力数据和流动可视化结果,发现通道传热系数随出口干度增大,呈迅速增大后减小并趋于稳定趋势,正弦波微通道相较直微通道具有更好的换热性能,传热系数最大提高127.7%,压降仅增加14.4%。波状通道结构能明显抑制流动沸腾中不稳定现象发生。通过可视化试验发现,随热通量增大,流型经历泡状流-弹状流-环状流的转变,换热主导机制由核态沸腾逐渐过渡到薄液膜蒸发。

关键词: 正弦波微通道, 超快激光微加工, 流动沸腾, 流动不稳定性

Abstract:

In this work, the sinusoidal wavy (SW) copper microchannel with triangular cross section is manufactured with the ultrafast laser micromachining approach, which is a promising technique for the fabrication of metallic microchannels due to its high accuracy and high processing efficiency. The experimental setup is established to study flow boiling heat transfer process in SW microchannel and the deionized water was utilized as the working fluid. The flow boiling phenomena in SW microchannel are experimentally investigated under different mass and heat fluxes. Based on obtained experimental results (temperature/pressure data and flow pattern images), it is found that the local heat transfer coefficient experiences a sharp increase and then decreases to a stable value with the increase of outlet vapor quality. The SW microchannel achieves a 127.7% increase of heat transfer coefficient and a 14.4% increase of pressure drop compared to the straight one. The wavy channel structure can significantly inhibit the instability in flow boiling. The dominant heat transfer mechanism gradually changes from nucleate boiling to thin film evaporation.

Key words: sinusoidal wavy microchannel, ultrafast laser micromachining, flow boiling, flow instability

中图分类号: 

  • TK 124

图1

试验系统示意图"

图2

测试段示意图"

图3

三种微通道示意图"

图4

微通道壁面扫描电镜图"

表1

试验误差"

ParameterError/%
T0.81
?P3.26
G2.84
h3.92
xo6.41

图5

通道压降随有效热通量的变化"

图6

当地传热系数-出口干度曲线"

图7

当地传热系数对比"

图8

直微通道和正弦波微通道内温度和压降振荡"

1 Hoefflinger B. ITRS: The International Technology Roadmap for Semiconductors[M]. Springer, 2011.
2 Sun B, Liu H F. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator[J]. Appl. Therm. Eng., 2017, 115: 435-443.
3 Ramos-Alvarado B, Li P W, Liu H, et al. CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells[J]. Appl. Therm. Eng., 2011, 31: 2494-2507.
4 Gao F, Blunier B, Miraoui A. Proton exchange membrane fuel cell multi-physical dynamics and stack spatial non-homogeneity analyses[J]. J. Power Sources, 2010, 195: 7609-7626.
5 Datta M, Choi H W. Microheat exchanger for cooling high power laser diodes[J]. Appl. Therm. Eng., 2015, 90: 266-273.
6 Yang B, Wang P, Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spots in high power devices[J]. IEEE Trans. Compon. Packag. Technol., 2007, 30(3): 432-438.
7 Nnanna A A, Rutherford W, Elomar W, et al. Assessment of thermoelectric module with nanofluid heat exchanger[J]. Appl. Therm. Eng., 2009, 29(2/3): 491-500.
8 Karayiannis T G, Mahmoud M M. Flow boiling in microchannels: fundamentals and applications[J]. Appl. Therm. Eng., 2017, 115: 1372-1397.
9 郭兆阳, 徐鹏, 王元华, 等. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12): 3798-3804.
Guo Z Y, Xu P, Wang Y H, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12): 3798-3804.
10 Jaikumar A, Kandlikar S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. Int. J. Heat Mass Transfer, 2015, 88: 652-661.
11 程云, 李菊香, 莫光东. 水在开孔泡沫铜中的池沸腾传热特性[J]. 化工学报, 2013, 64(4): 1231-1235.
Cheng Y, Li J X, Mo G D. Pool boiling heat transfer in porous copper foam[J]. CIESC Journal, 2013, 64(4): 1231-1235.
12 Sujith K C S, Suresh S, Aneesh C R, et al. Flow boiling heat transfer enhancement on copper surface using Fe doped Al2O3-TiO2 composite coatings[J]. Appl. Surf. Sci., 2015, 334: 102-109.
13 杨冬, 李永星, 陈听宽, 等.多孔表面管内高沸点工质的强化流动沸腾换热与阻力特性[J]. 化工学报, 2004, 55(10): 1631-1637.
Yang D, Li Y X, Chen T K, et al. Enhanced flow boiling heat transfer of high saturation temperature organic fluid in vertical porous tube[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(10): 1631-1637.
14 徐法尧, 吴慧英. 可压缩容积对内肋阵列微通道流动沸腾不稳定性影响[J]. 科学通报, 2017, 62: 312-319.
Xu F Y, Wu H Y. Effect of compressible volume on flow boiling instability of water in the pin-fin microchannel[J]. Chin. Sci. Bull., 2017, 62: 312-319.
15 杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989.
Du B Z, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989.
16 Shen H, Zhang Y C, Wang C C, et al. Comparative study for convective heat transfer of counter-flow wavy double-layer microchannel heat sinks in staggered arrangement[J]. Appl. Therm. Eng., 2018, 137: 228-237.
17 Lin L, Zhao J, Lu G, et al. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude[J]. Int. J. Therm. Sci., 2017, 118: 423-434.
18 Rosaguti N R, Fletcher D F, Haynes B S. Low-Reynolds number heat transfer enhancement in sinusoidal channels[J]. Chem. Eng. Sci., 2007, 62(3): 694-702.
19 Zhou J, Hatami M, Song D, et al. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods[J]. Int. J. Heat Mass Transfer, 2016, 103: 715-724.
20 Metwally H, Manglik R M. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels[J]. Int. J. Heat Mass Transfer, 2004, 47(10/11): 2283-2292.
21 Sui Y, Teo C, Lee P S, et al. Fluid flow and heat transfer in wavy microchannels[J]. Int. J. Heat Mass Transfer, 2010, 53(13/14): 2760-2772.
22 Sui Y, Lee P, Teo C. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section[J]. Int. J. Therm. Sci., 2011, 50(12): 2473-2482.
23 Rush T, Newell T, Jacobi A. An experimental study of flow and heat transfer in sinusoidal wavy passages[J]. Int. J. Heat Mass Transfer, 1999, 42(9): 1541-1553.
24 Huang H X, Wu H Y, Zhang C. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels[J]. J. Micromech. Microeng., 2018, 28: 055003.
25 Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, et al. Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink[J]. Appl. Therm. Eng., 2016, 92: 50-61.
26 Tiwari N, Moharana M. Two-phase flow conjugate heat transfer in wavy microchannel[C]//ASME 16th International Conference on Nanochannels, Microchannels, and Minichannels. 2018: V001T02A017.
27 Xia G D, Tang Y X, Zong L X, et al. Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall[J]. Int. Commun. Heat Mass Transfer, 2019, 101: 89-102.
28 Deng D X, Chen X L, Chen L, et al. Preparation of porous structures on copper microchannel surfaces by laser writing[J]. Sci. China: Technol. Sci., 2019, 62: 1-10.
29 刘巍, 朱春玲. 分流板结构对微通道平行流蒸发器性能的影响[J]. 化工学报, 2012, 63(3): 761-766.
Liu W, Zhu C L. Effects of deflector structure on performance of micro-channel evaporator with parallel flow[J]. CIESC Journal, 2012, 63(3): 761-766.
30 Moffat R J. Describing the uncertainties in experimental results[J]. Exp. Therm. Fluid Sci., 1988, 1: 3-17.
[1] 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64.
[2] 王皓显, 李剑锐, 胡海涛, 丁国良, 武春林, 陈慧, 邢占洋. 纵荡对板翅式换热器通道内液化天然气流动沸腾换热特性的影响分析[J]. 化工学报, 2018, 69(S2): 101-108.
[3] 姜林林, 柳建华, 张良, 赵越. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436.
[4] 姜林林, 柳建华, 张良, 赵越. 水平微细管内CO2流动沸腾压降特性[J]. 化工学报, 2017, 68(12): 4576-4584.
[5] 赵然, 吴晓敏, 黄秀杰. 微细通道中R32流动沸腾换热的数值模拟[J]. 化工学报, 2016, 67(S1): 33-39.
[6] 邱金友, 张华, 余晓明, 王袭, 吴银龙. 新型制冷剂R1234ze(E)水平圆管内流动沸腾换热特性[J]. 化工学报, 2016, 67(6): 2255-2262.
[7] 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108.
[8] 徐彬, 石玉美. 竖直微肋管内LNG流动沸腾传热特性的分析[J]. 化工学报, 2015, 66(S2): 66-75.
[9] 陈东升, 石玉美. 0.5 MPa下液化天然气在竖直圆管中饱和流动沸腾传热[J]. 化工学报, 2014, 65(4): 1199-1207.
[10] 徐彬, 石玉美, 陈东升, 于忠杰. 竖直圆管内液氮流动沸腾传热特性的分析[J]. 化工学报, 2014, 65(2): 460-467.
[11] 陈世昌,马建平,张先明,陈文兴. 竖直降液膜流动在反应工程中的应用[J]. 化工进展, 2014, 33(10): 2528-2534.
[12] 盖争, 林日亿, 刘晓杰, 李魏, 王新伟, 宋多培. 稠油开采污水蒸发结垢过程传热传质计算方法[J]. 化工学报, 2013, 64(S1): 41-45.
[13] 刘昕, 张树生, 程林, 常威. 受限微细通道内的流动沸腾流型转化准则[J]. 化工学报, 2013, (5): 1573-1579.
[14] 王新亮1,杨文刚2,史晓平1,陶金亮1,邢晓康1. 纳米管阵列表面流动沸腾传热特性的实验研究[J]. 化工进展, 2013, 32(08): 1771-1774.
[15] 孙斌,钱铮. CuO/R141b纳米制冷剂在管内的流动沸腾传热特性[J]. 化工学报, 2012, 63(3): 733-739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 钱新明, 刘牧, 刘振翼. 隧道内液化天然气管道泄漏火灾温度场的数值模拟 [J]. 化工学报, 2009, 60(12): 3184 -3188 .
[3] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[4] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[5] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[6] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[7] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[8] 葛善海,衣宝廉,徐洪峰. 质子交换膜燃料电池水传递模型 [J]. CIESC Journal, 1999, 50(1): 39 -48 .
[9] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[10] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .