化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1131-1142.doi: 10.11949/0438-1157.20190978

• 过程系统工程 • 上一篇    下一篇

化工系统消纳可再生能源的电-氢协调储能系统优化设计

王靖1(),康丽霞1,2,刘永忠1,2,3()   

  1. 1. 西安交通大学化工系, 陕西 西安 710049
    2. 陕西省能源化工过程强化重点实验室, 陕西 西安 710049
    3. 热流科学与工程教育部重点实验室, 陕西 西安 710049
  • 收稿日期:2019-08-26 修回日期:2019-10-30 出版日期:2020-03-05 发布日期:2019-11-28
  • 通讯作者: 刘永忠 E-mail:wjjycg0916@stu.xjtu.edu.cn;yzliu@mail.xjtu.edu.cn
  • 作者简介:王靖(1995—),女,博士研究生,wjjycg0916@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21878240);中国博士后基金项目(2018M633518);陕西省重点研发计划项目(2018GY-072)

Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems

Jing WANG1(),Lixia KANG1,2,Yongzhong LIU1,2,3()   

  1. 1. Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2. Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi’an 710049, Shaanxi, China
    3. Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an 710049, Shaanxi, China
  • Received:2019-08-26 Revised:2019-10-30 Online:2020-03-05 Published:2019-11-28
  • Contact: Yongzhong LIU E-mail:wjjycg0916@stu.xjtu.edu.cn;yzliu@mail.xjtu.edu.cn

摘要:

针对可再生能源发电间歇性和波动性与化工过程系统氢气需求波动性协调匹配的问题,本文以电-氢储能系统总费用最小为目标,建立了可再生能源发电与化工生产中加氢系统耦合的电-氢协调储能系统优化设计模型,以确定电-氢协调储能系统的最优容量配置和功率调度方案。采用典型案例研究了可再生能源渗透率和电-氢储能系统构成对电-氢储能优化设计和运行特性的影响。研究表明:当化工系统的氢气需求全部由可再生能源发电制氢提供时,在系统中同时采用电池和氢气储罐储能可有效地降低系统的总费用;在该系统中,电池可用于平抑短期内发电侧和负荷侧的波动,氢气储罐可平衡发电侧和负荷侧长期的不匹配;随着可再生能源渗透率的增加,系统的总费用显著增大;为了维持外购氢气流率的稳定,系统中需要增加电解槽和储能系统的容量以解决发电侧和负荷侧的波动和不匹配问题。

关键词: 化工系统, 可再生能源, 电池, 储氢, 集成, 优化设计

Abstract:

To coordinate and match fluctuations of hydrogen demand in chemical production systems with the intermittent and variability of renewable energy, an optimization model for the electricity-hydrogen energy storage system coupled with a renewable energy system and a hydrogenation system in the chemical production systems was established, aiming to minimize the total cost of the energy storage system and to determine the optimal capacity configuration and power dispatching scheme of the system. The design and operation characteristics of the energy storage system were analyzed and discussed under the different configuration of the system and the penetration rate of renewable energy. The results show that when the hydrogen demand of the chemical production system is completely satisfied by the renewable energy, the energy storage combined by battery system and hydrogen tanks can effectively reduce the total cost of the system. In the electricity-hydrogen storage system, the configuration of the battery can effectively reduce the maximum load of the electrolyzer. The battery is used to stabilize fluctuations in the supply and demand in a short term, whereas the hydrogen tank is used to cope with mismatches between the supply and demand in a long-term. The total cost of the system increases dramatically with the increase of the penetration rate of renewable energy. To maintain the stability of the purchased hydrogen flow rate, the capacity of the electrolytic cell and the energy storage system needs to be increased in the system to solve the fluctuation and mismatch between the power generation side and the load side.

Key words: chemical process system, renewable energy, battery, hydrogen storage, integration, optimal design

中图分类号: 

  • TQ 021.8
1 谢华清, 张卫东, 林贺勇, 等 . 吸附强化焦油蒸汽重整制取氢气[J]. 化工学报, 2018, 69(S2): 466-472.
Xie H Q , Zhang W D , Lin H Y , et al .Hydrogen production via sorption-enhanced steam reforming of tar[J]. CIESC Journal, 2018, 69: 466-472.
2 Acar C , Dincer I . Comparative assessment of hydrogen production methods from renewable and non-renewable sources[J]. International Journal of Hydrogen Energy, 2014, 39(1): 1-12.
3 Hanley E S , Deane J P , Gallachóir B P . The role of hydrogen in low carbon energy futures—a review of existing perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3027-3045.
4 Gondal I A . Hydrogen integration in power-to-gas networks[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1803-1815.
5 Lewandowska-Bernat A , Desideri U . Opportunities of power-to-gas technology in different energy systems architectures[J]. Applied Energy, 2018, 228: 57-67.
6 Schiebahn S , Grube T , Robinius M , et al . Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4285-4294.
7 Eriksson E L V , Gray E M . Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems — a critical review[J]. Applied Energy, 2017, 202: 348-364.
8 Gabrielli P , Gazzani M , Martelli E , et al . Optimal design of multi-energy systems with seasonal storage[J]. Applied Energy, 2018, 219: 408-424.
9 Vivas F J , de las Heras A , Segura F , et al . A review of energy management strategies for renewable hybrid energy systems with hydrogen backup[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 126-155.
10 Aneke M , Wang M . Energy storage technologies and real life applications — a state of the art review[J]. Applied Energy, 2016, 179: 350-377.
11 Yang Y , Bremner S , Menictas C , et al . Battery energy storage system size determination in renewable energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 109-125.
12 Gillessen B , Heinrichs H U , Stenzel P , et al . Hybridization strategies of power-to-gas systems and battery storage using renewable energy[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13554-13567.
13 Guinot B , Champel B , Montignac F , et al . Techno-economic study of a PV-hydrogen-battery hybrid system for off-grid power supply: impact of performances' ageing on optimal system sizing and competitiveness[J]. International Journal of Hydrogen Energy, 2015, 40(1): 623-632.
14 Khiareddine A , Ben Salah C , Rekioua D , et al . Sizing methodology for hybrid photovoltaic /wind/hydrogen/battery integrated to energy management strategy for pumping system[J]. Energy, 2018, 153: 743-762.
15 Parra D , Valverde L , Pino F J , et al . A review on the role, cost and value of hydrogen energy systems for deep decarbonisation[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 279-294.
16 Zhang W , Maleki A , Rosen M A , et al . Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage[J]. Energy, 2018, 163: 191-207.
17 Marchenko O V , Solomin S V . Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9361-9370.
18 Zhang Y , Campana P E , Lundblad A , et al . Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: storage sizing and rule-based operation[J]. Applied Energy, 2017, 201: 397-411.
19 Ghaib K , Ben-Fares F Z . Power-to-methane: a state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 433-446.
20 Uebbing J , Rihko-Struckmann L K , Sundmacher K . Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies[J]. Applied Energy, 2019, 233/234: 271-282.
21 Allman A , Daoutidis P , Tiffany D , et al . A framework for ammonia supply chain optimization incorporating conventional and renewable generation[J]. AIChE Journal, 2017, 63(10): 4390-4402.
22 Rivarolo M , Bellotti D , Magistri L , et al . Feasibility study of methanol production from different renewable sources and thermo-economic analysis[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2105-2116.
23 Bellotti D , Rivarolo M , Magistri L , et al . Feasibility study of methanol production plant from hydrogen and captured carbon dioxide[J]. Journal of CO2 Utilization, 2017, 21: 132-138.
24 Chen Q , Lv M , Gu Y , et al . Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620.
25 Tezer T , Yaman R , Yaman G . Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 840-853.
26 Staffell I , Pfenninger S . Using bias-corrected reanalysis to simulate current and future wind power output[J]. Energy, 2016, 114: 1224-1239.
27 Maggio G , Nicita A , Squadrito G . How the hydrogen production from RES could change energy and fuel markets: a review of recent literature[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11371-11384.
28 Luo X , Wang J , Dooner M , et al . Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137: 511-536.
29 Beccali M , Brunone S , Finocchiaro P , et al . Method for size optimisation of large wind-hydrogen systems with high penetration on power grids[J]. Applied Energy, 2013, 102: 534-544.
30 Mariaud A , Acha S , Ekins-Daukes N , et al . Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings[J]. Applied Energy, 2017, 199: 466-478.
31 Zakeri B , Syri S . Electrical energy storage systems: a comparative life cycle cost analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 569-596.
[1] 贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
[2] 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
[3] 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850.
[4] 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397.
[5] 潘帅, 纪常伟, 汪硕峰, 王兵, 孙洁洁, 戚朋飞. 废旧三元动力电池电热特性的实验研究[J]. 化工学报, 2020, 71(3): 1297-1309.
[6] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[7] 李开宇, 刘桂莲. 储氢提纯和氢网络的耦合优化[J]. 化工学报, 2020, 71(3): 1143-1153.
[8] 许于, 陈怡沁, 周静红, 隋志军, 周兴贵. LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830.
[9] 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121.
[10] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[11] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[12] 杨铃,郑成,李镇明. 微波协同离子液体催化合成柠檬酸三丁酯[J]. 化工学报, 2019, 70(S2): 287-293.
[13] 陈稳稳,刘中良,姜克隽,侯俊先,娄晓歌,李艳霞,廖强,朱恂. 微生物燃料电池处理含柠檬酸钠废水的研究[J]. 化工学报, 2019, 70(S2): 322-328.
[14] 万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335.
[15] 陈东良, 张忠林, 杨景轩, 马旭莉, 李鹏, 郝晓刚, 官国清. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙紫红, 袁安保. Electrochemical Performance of Nickel Hydroxide/Activated Carbon Supercapacitors Using a Modified Polyvinyl Alcohol Based Alkaline Polymer Electrolyte[J]. CIESC Journal, 2009, 17(1): 150 -155 .
[2] 李国华, 陈丹, 姚国新, 施斌斌, 马淳安. Preparation of WC@TiO2 Core-shell Nanocomposite and Its Electrocatalytic Characteristics[J]. CIESC Journal, 2011, 19(1): 145 -150 .
[3] 葛皓, 陈光文, 袁权, 李恒强. 微反应器内甲苯气固催化氧化反应动力学 [J]. 化工学报, 2007, 58(8): 1967 -1972 .
[4] 陈嘉宾,蔡振业,林纪方. 人工汽化中心表面核状沸腾传热的研究——(Ⅱ)关于核状沸腾传热机理以及汽化中心的大小和密度对沸腾给热系数的影响 [J]. CIESC Journal, 1986, 37(3): 279 -286 .
[5] 许涌深,曹同玉,龙复,韩伟平. 核壳型复合聚合物乳液合成工艺研究 [J]. CIESC Journal, 1991, 42(6): 683 -689 .
[6] 潘焕泉,韩世钧,姚燕. 电势法研究NaBr在甲醇-水混合溶剂中298.15K下的热力学性质 [J]. CIESC Journal, 1992, 43(3): 360 -366 .
[7] 李文, 韩翔宇, 陈皓侃, 李保庆. 加压下硫化钙氧化反应动力学和模型 [J]. 化工学报, 2003, 54(5): 625 -632 .
[8] 毕胜 , 徐春明 , 高金森. 高硫石油焦燃烧固硫特性 [J]. 化工学报, 2003, 54(6): 819 -823 .
[9] 高翠丽;夏延致;纪全;孔庆山;李青杨 . PET/PLA共混物的降解性 [J]. CIESC Journal, 2006, 57(9): 2237 -2240 .
[10] 杨忠华;姚善泾;王光辉 . 引入树脂吸附促进酵母细胞不对称还原芳香酮 [J]. CIESC Journal, 2006, 57(10): 2388 -2392 .