化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1881-1888.doi: 10.11949/0438-1157.20190969

• 材料化学工程与纳米技术 • 上一篇    下一篇

聚偏氟乙烯/石墨烯复合材料的制备及性能研究

郭华超(),杨波,黄国家(),徐青永,李爽,伍振凌   

  1. 广州特种承压设备检测研究院,国家石墨烯产品质量监督检验中心,广东 广州 510663
  • 收稿日期:2019-08-30 修回日期:2019-12-25 出版日期:2020-04-05 发布日期:2020-01-11
  • 通讯作者: 黄国家 E-mail:862275547@qq.com;huangguojia@163.com
  • 作者简介:郭华超(1992—),女,硕士,助理工程师,862275547@qq.com
  • 基金资助:
    广东省质监局科技项目(2018CT31);广州市市场监督管理局科技项目(2019kj14)

Preparation and properties of polyvinylidene fluoride/graphene composites

Huachao GUO(),Bo YANG,Guojia HUANG(),Qingyong XU,Shuang LI,Zhenling WU   

  1. Guangzhou Special Pressure Equipment Inspection and Research Institute, National Quality Supervision and Inspection Center of Graphene Product, Guangzhou 510663, Guangdong, China
  • Received:2019-08-30 Revised:2019-12-25 Online:2020-04-05 Published:2020-01-11
  • Contact: Guojia HUANG E-mail:862275547@qq.com;huangguojia@163.com

摘要:

用溶液共混法制备出聚偏氟乙烯/氧化石墨烯复合材料(PVDF/GO),经高温热压将GO还原得到聚偏氟乙烯/还原氧化石墨烯复合材料(PVDF/rGO)。研究了填料种类及含量对复合材料电学性能、热稳定性和力学性能的影响。结果表明:随GO和rGO的添加,两种复合材料的介电常数(ε r)均变大、介电损耗(tanδ)变化不大;低含量下GO和rGO均能提高PVDF的热稳定性,但rGO对PVDF性能的改善效果更好;随填料含量从0增加到8%(质量),100 Hz下PVDF/rGO复合材料的ε r从3.60增加到38.30,PVDF/rGO[4%(质量)]复合材料失重率为5%的分解温度较纯PVDF提高了6.44℃。rGO增强了PVDF的刚性,PVDF/rGO复合材料的拉伸强度先增大后减小,杨氏模量逐渐增大,当rGO含量为4%(质量)时拉伸强度最大,拉伸强度和弹性模量分别较纯PVDF提高了35.30%、22.58%。但GO和rGO都降低了复合材料的击穿场强。

关键词: 聚偏氟乙烯, 氧化石墨烯, 还原氧化石墨烯, 复合材料, 性能

Abstract:

A polyvinylidene fluoride/graphene oxide composite material (PVDF/GO) was prepared by a solution blending method, and GO was reduced by hot pressing to obtain a polyvinylidene fluoride/reduced graphene oxide composite material (PVDF/rGO). The effects of filler types and contents on the electrical properties, thermal stability and mechanical properties of composites were studied. The results showed that both the addition of GO and rGO can improve the dielectric constant (ε r), thermal stability of PVDF at low content, and the dielectric loss (tan δ) of the composites change little, but PVDF/rGO composites always had higher properties than PVDF/GO composites. The ε r of PVDF/rGO composites increased from 3.60 to 38.30 at 100 Hz with the filler content from 0 to 8%(mass), the decomposition temperature of 5% mass loss in PVDF/rGO [4%( mass)] composites was 6.44℃ higher than that of pure PVDF. The rigidity of PVDF enhanced by rGO, the tensile strength of PVDF/rGO composites increased firstly and then decreased, and the Young modulus of the composites increased gradually. When the content of rGO was 4%(mass), the tensile strength of PVDF/rGO reached the maximum value, tensile strength and Young modulus increased by 35.30% and 22.58% respectively compared with pure PVDF. However, the breakdown strength of the composites decreased with the addition of GO and rGO.

Key words: polyvinylidene fluoride, graphene oxide, reduced graphene oxide, composites, properties

中图分类号: 

  • TB 324

图1

天然石墨、GO和rGO的FT-IR谱图"

图2

石墨和GO的微观结构照片"

图3

天然石墨、GO、PVDF/GO、PVDF/rGO复合材料的XRD谱图"

图4

PVDF/GO、PVDF/rGO复合材料介电常数的频率依赖性"

图5

PVDF/GO、PVDF/rGO复合材料损耗角正切随电场频率的变化"

图6

PVDF/GO、PVDF/rGO复合材料的击穿场强"

图7

复合材料的TGA曲线"

表1

复合材料的热稳定性"

样品 T 5/℃ T 10/℃ T 50/℃
纯PVDF 454.90 463.07 480.21
PVDF/GO[2%(质量)] 457.43 464.41 480.27
PVDF/GO[4%(质量)] 458.80 468.72 483.40
PVDF/GO[8%(质量)] 439.10 467.98 481.58
PVDF/rGO[2%(质量)] 459.41 466.58 480.42
PVDF/rGO[4%(质量)] 461.34 468.35 485.07
PVDF/rGO[8%(质量)] 439.83 461.83 483.40

表2

PVDF/rGO复合材料的力学性能"

rGO含量/% (质量) 拉伸强度/MPa 弹性模量/MPa 断裂伸长率/%
0 26.75 607.98 12.86
1 33.24 613.71 12.84
2 35.60 663.63 11.93
4 36.19 745.24 11.33
6 28.31 960.03 6.59
8 23.47 1307.97 3.81

图8

PVDF/rGO复合材料断面的SEM图"

1 Tiouitchi G , Raji M , Mounkachi O , et al . Black phosphorus-based polyvinylidene fluoride nanocomposites: synthesis, processing and characterization[J]. Composites Part B: Engineering, 2019, 175: 107165-107174.
2 Lee S G , Ha J W , Sohn E H , et al . Enhancement of polar crystalline phase formation in transparent PVDF-CaF2 composite films[J]. Applied Surface Science, 2016, 390: 339-345.
3 Park J A , Nam A , Kim J H , et al . Blend-electrospun graphene oxide/poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties[J]. Chemosphere, 2018, 207: 347-356.
4 Abzan N , Kharaziha M , Labbaf S . Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering[J]. Materials & Design, 2019, 167: 107636.
5 黄蓉蓉, 颜录科, 闫啸天 . 高介电常数聚偏氟乙烯基复合材料的研究进展[J]. 绝缘材料, 2016, 49(3): 7-10.
Huang R R , Yan L K , Yan X T . Research progress of high dielectric polyvinylidene fluoride composites[J]. Insulating Materials, 2016, 49(3): 7-10.
6 Mekhzoum M E M , Essabir H , Rodrigue D , et al . Graphene/montmorillonite hybrid nanocomposites based on polypropylene: morphological, mechanical, and rheological properties[J]. Polymer Composites, 2018, 39(6): 2046-2053.
7 Hsieh Y Y , Zhang Y , Zhang L , et al . High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline[J]. Nanoscale, 2019, 11(14): 6552-6560.
8 Chen J , Yao B W , Li C , et al . An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64(11): 225-229.
9 Zhu Y W , Murali S , Cai W W , et al . Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.
10 De Silva K K H , Huang H H , Joshi R K , et al . Chemical reduction of graphene oxide using green reductants[J]. Carbon, 2017, 119: 190-199.
11 翁程杰, 史叶勋, 何大方, 等 . 水热法制备还原氧化石墨烯及其导电性调控[J]. 化工学报, 2018, 69(7): 466-472.
Weng C J , Shi Y X , He D F , et al . Hydrothermal synthesis of reduced graphene oxide with tunable conductivity[J]. CIESC Journal, 2018, 69(7): 466-472.
12 Wang J F , Jin X X , Li C H , et al . Graphene and graphene derivatives toughening polymers: toward high toughness and strength[J]. Chemical Engineering Journal, 2019, 370: 831-854.
13 Poorali M S , Bagheri-Mohagheghi M M . Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(1): 260-271.
14 Shang Y , Zhang D , Liu Y , et al . Preliminary comparison of different reduction methods of graphene oxide[J]. Bulletin of Materials Science, 2015, 38(1): 7-12.
15 Raji M , Essabir H , Rodrigue D , et al . Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites[J]. Polymer Composites, 2018, 39(8): 2932-2941.
16 Lee J , Lim S . Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 478-485.
17 Zhu W , Ma J , Nan X , et al . Study on dispersion of reduced graphene oxide on physical performance of polyvinylidene fluoride composites by Hansen solubility parameters[J]. Colloid & Polymer Science, 2019, 297(2): 213-224.
18 杨蓉, 李兰, 王黎晴, 等 . 微波法制备还原氧化石墨烯及其在锂硫电池中的应用[J]. 化工学报, 2017, 68(11): 4333-4340.
Yang R , Li L , Wang L Q , et al . Preparation of reduced graphene oxide by microwave method and its application in lithium-sulfur batteries[J]. CIESC Journal, 2017, 68(11): 4333-4340.
19 Sheshmani S , Fashapoyeh M A . Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets[J]. Acta Chimica Slovenica, 2014, 60(4): 813-825.
20 关玉函 . 石墨烯/聚合物柔性介电复合材料的制备与性能[D]. 北京: 清华大学, 2014.
Guan Y H . Preparation and properties of flexible polymer-based dielectric composites with graphene[D]. Beijing: Tsinghua University, 2014.
21 冯奇, 李梦凯, 唐海通, 等 . 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能[J]. 物理学报, 2016, 65(18): 188101-1.
Feng Q , Li M K , Tang H T , et al . Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films[J]. Acta Physica Sinica, 2016, 65(18): 188101-1.
22 房明瑞 . 高介电常数聚偏氟乙烯基复合材料的制备及性能研究[D]. 西安: 陕西科技大学, 2016.
Fang M R . Study on preparation and property of poly(vinylidene fluoride) based composites with high dielectric constant[D]. Xi an: Shaanxi University of Science and Technology, 2016.
23 黄国家, 陈志刚, 李茂东,等 . 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74(10): 789-799.
Huang G J , Chen Z G , Li M D , et al . Surface functional modification of graphene and graphene oxide[J]. Acta Chim. Sinica, 2016, 74(10): 789-799.
24 Jiang X B , Zhao X J , Peng G R , et al . Investigation on crystalline structure and dielectric relaxation behaviors of hot pressed poly(vinylidene fluoride) film[J]. Current Applied Physics, 2017, 17: 15-23.
25 Deng W , Yu W L , Cui W W , et al . High dielectric permittivity and low loss of polyvinylidene fluoride filled with carbon additives: expanded graphite versus reduced graphene oxide[J]. High Performance Polymers, 2019, 31(7): 778-784.
26 张城城, 王金辉, 景子昂, 等 . 抗氧剂和石墨烯微片对XLPE直流击穿和空间电荷的影响[J]. 哈尔滨理工大学学报, 2018, 23(4): 11-15.
Zhang C C , Wang J H , Jing Z A , et al . The effect of antioxidant and graphite nanoplatelet on DC breakdown and space charge of cross-linked polyethylene[J]. Journal of Harbin University of Science and Technology, 2018, 23(4): 11-15.
27 王明, 张盼盼, 白晓玉 . 聚氯乙烯/氧化石墨烯的力学性能和热稳定性[J]. 材料研究学报, 2012, 26(4): 390-395.
Wang M , Zhang P P , Bai X Y . Mechanical and thermal stabilization properties of the poly(vinyl chloride)/graphene oxide film[J]. Chinese Journal of Materials Research, 2012, 26(4): 390-395.
28 Alhusaiki-Alghamdi H M . Thermal and electrical properties of graphene incorporated into polyvinylidene fluoride/polymethyl methacrylate nanocomposites[J]. Polymer Composites, 2016, 38: 246-253.
29 田小艳, 高超锋, 黄捷, 等 . 聚丙烯/氧化石墨烯(PP /GO)复合材料的制备及性能[J]. 塑料, 2019, 48(2): 105-108.
Tian X Y , Gao C F , Huang J , et al . Preparation and properties of polypropylene/graphene oxide(PP/GO) nanocomposite[J]. Plastics, 2019, 48(2): 105-108.
30 郭华超, 邓伟, 杨波, 等 . 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
Guo H C , Deng W , Yang B , et al . Preparation and properties of polyvinylidene fluoride/expanded graphite high dielectric composites[J]. Materials Reports, 2019, 33(20): 3520-3523.
31 Baji A , Mai Y W , Abtahi M , et al . Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity[J]. Composites Science and Technology, 2013, 88(10): 1-8.
[1] 明勇, 彭艳楠, 苏文, 魏国龙, 王强, 周乃君, 赵力. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579.
[2] 刘叶峰, 左鹏, 李瑞琪, 焦纬洲, 王蕊欣. 杂多酸的共价负载及其对四氢噻吩氧化性能研究[J]. 化工学报, 2020, 71(4): 1627-1636.
[3] 蒙真真, 武志红, 刘新伟, 王耀, 郑海康, 王宇斌. 竹节状碳化硅晶须吸波性能研究[J]. 化工学报, 2020, 71(4): 1889-1897.
[4] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[5] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[6] 杨永安, 李瑞申, 李坤, 孙天慧. 采用R410A单一工质的复叠式空气源热泵[J]. 化工学报, 2020, 71(4): 1812-1821.
[7] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[8] 薛爱莲, 周守勇, 蔡健健, 李梅生, 张艳, 赵宜江. 温敏性PVDF/PGS-g-PNIPAM纳米复合超滤膜的制备和性能[J]. 化工学报, 2020, 71(3): 1380-1389.
[9] 许于, 陈怡沁, 周静红, 隋志军, 周兴贵. LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830.
[10] 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787.
[11] 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
[12] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[13] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[14] 侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[15] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王渊涛, 方诚刚, 张锋, 吴有庭, 耿皎, 张志炳. 氨基酸离子液体-MDEA混合水溶液的CO2吸收性能 [J]. 化工学报, 2009, 60(11): 2781 -2786 .
[2] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[3] 钱新明, 刘牧, 刘振翼. 隧道内液化天然气管道泄漏火灾温度场的数值模拟 [J]. 化工学报, 2009, 60(12): 3184 -3188 .
[4] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[5] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[6] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[7] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[8] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[9] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[10] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .