化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1491-1501.doi: 10.11949/0438-1157.20190964

• 流体力学与传递现象 • 上一篇    下一篇

基于离散相模型的相变微胶囊流体传热特性数值模拟

吴兴辉1(),杨震1,陈颖2,段远源1()   

  1. 1. 清华大学热科学与动力工程教育部重点实验室,北京市二氧化碳利用与减排技术重点实验室,北京 100084
    2. 广东工业大学广东省功能软凝聚态物质重点实验室,广东 广州 510006
  • 收稿日期:2019-08-22 修回日期:2020-01-14 出版日期:2020-04-05 发布日期:2020-02-26
  • 通讯作者: 段远源 E-mail:wuxh16@mails.tsinghua.edu.cn;yyduan@tsinghua.edu.cn
  • 作者简介:吴兴辉(1994—),男,博士研究生,wuxh16@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(51876045)

Simulation studies on heat transfer characteristics of PCM micro-encapsulated fluids based on discrete phase model

Xinghui WU1(),Zhen YANG1,Ying CHEN2,Yuanyuan DUAN1()   

  1. 1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
    2. Guangdong Province Key Laboratory of Functional Soft Condensate Matter, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2019-08-22 Revised:2020-01-14 Online:2020-04-05 Published:2020-02-26
  • Contact: Yuanyuan DUAN E-mail:wuxh16@mails.tsinghua.edu.cn;yyduan@tsinghua.edu.cn

摘要:

相变材料微胶囊悬浮液是将相变微胶囊颗粒添加至单相流体中形成的一种新型传热介质,由于传热系数高、传热储能一体化等优势,具备很大的发展潜力。采用离散相两相流模型,对恒热流水平圆管中相变微胶囊流体的传热特性进行了模拟计算,通过对比实验数据验证了模型的可靠性,进而定量分析了颗粒尺寸、质量分数、相变潜热,特别是颗粒分布对传热的影响。结果表明随着微胶囊颗粒质量分数增加,颗粒粒径减小,相变潜热增大,壁面传热效果越好,且相变潜热大小对壁温控制和壁面传热的影响大于颗粒质量分数和颗粒尺寸的影响。比较了离散相模型与常用的单相流模型的计算结果,发现质量分数越高,颗粒集聚程度越高,单相流模型计算的偏差越大。

关键词: 计算流体力学, 相变, 微胶囊, 粒度分布, 对流, 传热

Abstract:

Micro-encapsulated phase change material slurry is a new type of heat transfer media which consists of microencapsulated phase change particles and a single-phase heat fluid. Due to the advantages of high coefficient of heat transfer, integration of heat transfer and energy storage, the new media has great development potential. In this paper, we used discrete phase model to numerically analyze the heat transfer characteristics of micro-encapsulated slurry in horizontal circular tube under constant heat flux. The model is verified by comparing with the experimental results. The effects of particle size, mass fraction, phase change latent heat, especially particle distribution on heat transfer were quantitatively analyzed. The results show that as the mass fraction of microcapsules increases, particle size decreases, latent heat of phase change increases, the heat transfer at wall is better. Moreover, the effect of latent heat on wall temperature control and heat transfer is greater than that of particle mass fraction and particle size. The calculation results of the discrete phase model and the commonly used single-phase flow model are compared. It is found that the higher the mass fraction, the higher the degree of particle aggregation, and the greater the deviation of the single-phase flow model.

Key words: CFD, phase change, microcapsule, particle size distribution, convective, heat transfer

中图分类号: 

  • TK 01+8

图1

相变微胶囊悬浮液(MPCS)示意图"

图2

数学计算域"

表1

PMMA和石蜡的物理性质"

材料 ρ/(kg/m3) cp /(J/(kg·K)) k/(W/(m·K)) ?H/(kJ/kg)
PMMA 1,190 1,470 0.21
石蜡 931.4 2,136 0.2 190

图3

等效比热容法示意图"

图4

MPCS轴向温度分布模拟与实验结果比较"

图5

Re=900、质量分数5%、颗粒粒径10 μm时的模拟结果"

图6

不同颗粒质量分数下壁面温度和Nu分布"

表2

不同微胶囊颗粒质量分数对比"

质量分数ω/% ?T/K ?T减小/% Nu 提升/%
2 3.69 9.83
5 3.18 13.8 10.1 2.44
8 2.9 21.4 10.2 3.76

图7

不同颗粒粒径大小下壁面温度和Nu分布"

表3

不同微胶囊颗粒粒径大小对比"

粒径大小/μm ?T/K ?T减小/% Nu 提升/%
100 4 9.69
50 3.84 4 9.76 0.72
10 3.18 20.5 10.1 3.92

图8

不同相变潜热下壁面温度和Nu分布"

表4

不同相变潜热对比"

微胶囊 ?T/K ?T减小/% Nu 提升/%
不发生相变的微胶囊 3.9 9.74
常规相变的微胶囊 3.18 18.5 10.1 3.39
相变潜热为正常值两倍时的相变微胶囊 2.98 23.6 10.2 4.31

图9

不同质量分数下两种模型对比"

表5

单相流模型与离散相模型对比"

模型 离散相 单相流 相对偏差/%
2%出流面?T/K 3.69 4.21 14.1
2%壁面Nu 9.83 9.60 -2.34
5%出流面?T/K 3.18 3.70 16.4
5%壁面Nu 10.1 9.83 -2.38
8%出流面?T/K 2.90 3.40 17.2
8%壁面Nu 10.2 9.96 -2.35

图10

不同质量分数下中间流面颗粒浓度和温度分布"

1 Cui Y , Xie J , Liu J , et al . A review on phase change material application in building[J]. Adv. Mech. Eng., 2017, 9(6): 168781401770082.
2 Pasupathy A , Velraj R , Seeniraj R V , et al . Phase change material-based building architecture for thermal management in residential and commercial establishments[J]. Renew. Sust. Energ. Rev., 2008, 12(1): 39-64.
3 陈思彤, 李微微, 王学科, 等 . 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67: 1-6.
Chen S T , Li W W , Wang X K , et al . Phase change materials are used for thermal management of proton exchange membrane fuel cells[J]. CIESC Journal, 2016, 67: 1-6.
4 Tian Y , Liu Y , Zhang L , et al . Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules[J]. Colloids Surfaces A, 2019, 586: 124216.
5 赖艳华, 吴涛, 魏露露, 等 . 基于相变材料的电子元件的散热性能[J]. 化工学报, 2014, 65: 157-161.
Lai Y H , Wu T , Wei L L , et al . Heat dissipation performance of electronic components based on phase change materials[J]. CIESC Journal, 2014, 65: 157-161.
6 Hao Z , Kai C , Ge Z , et al . Binary semiconductor In2Te3 for the application of phase-change memory device[J]. J. Mater. Sci., 2010, 45(13): 3569-3574.
7 Sharma A , Tyagi V V , Chen C R , et al . Review on thermal energy storage with phase change materials and applications[J]. Renew. Sust. Energ. Rev., 2009, (13): 318-345.
8 Farid M M , Khudhair A M , Razack S A K , et al . A review on phase change energy storage: materials and applications[J]. Energ. Convers. Manage., 2004, (45): 1597-1615.
9 Delagado M , Lazaro A , Mazo J , et al . Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications[J]. Renew. Sust. Energ. Rev., 2012, (16): 253-273.
10 宋爱宝 . 微胶囊技术的研究和应用[J]. 今日科技, 1990, (6): 10-11.
Song A B . Research and application of microcapsule technology[J]. Today Science & Technology, 1990, (6): 10-11.
11 Li X , Sun L , Sui H , et al . A novel polymeric adsorbent embedded with phase change materials (PCMs) microcapsules: synthesis and application[J]. Nanomaterials, 2019, 9(5): 736.
12 Wang X , Chen Z , Xu W , et al . Capric acid phase change microcapsules modified with graphene oxide for energy storage[J]. J. Mater. Sci., 2019, 54(3): 14834-14844.
13 钟小龙, 刘东, 胥海伦 . 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67: 203-209.
Zhong X L , Liu D , Xu H L . Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67: 203-209.
14 李杰, 刘红研, 汪树军, 等 . 密胺树脂硫磺微胶囊的制备及应用[J]. 化工学报, 2011, 62(6): 1716-1722.
Li J , Liu H Y , Wang S J , et al . Preparation and application of melamine resin sulfur microcapsules[J]. CIESC Journal, 2011, 62(6): 1716-1722.
15 梅乐和, 姚善泾, 林东强, 等 . NaCS-PDADMAC生物微胶囊对苏云金杆菌的生物相容性[J]. 化工学报, 1999, 50(5): 592-597.
Mei L H , Yao S J , Lin D Q , et al . Biocompatibility of NaCS-PDADMAC biological microcapsules for Bacillus thuringiensis [J]. Journal of Chemical Industry and Engineering(China), 1999, 50(5): 592-597.
16 Shi J , Zhang S , Wang X , et al . Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach[J]. J. Mater. Chem. B, 2014, 2(27): 4289-4296.
17 Hasanzadeh M , Shahidi M , Kazemipour M . Application of EIS and EN techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CeO2 nanoparticles[J]. Prog. Org. Coat., 2015, 80: 106-119.
18 饶林刚, 贾莉斯, 陈颖, 等 . 分散剂对相变纳米胶囊悬浮液稳定性的影响[J]. 广东化工, 2017, (9): 67-71.
Rao L G , Jia L S , Chen Y , et al . Effect of dispersant on suspension stability of phase change nano-capsules[J]. Guangdong Chemical Industry, 2017, (9): 67-71.
19 Goel M , Roy S K , Sengupta S . Laminar forced convection heat transfer in microcapsulated phase change material suspensions[J]. Int. J. Heat Mass Trans., 1994, 37(4): 593-604.
20 Chen B , Wang X , Zeng R , et al . An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux[J]. Exp. Therm. Fluid Sci., 2008, 32(8): 1638-1646.
21 Choi E , Cho Y I , Lorsch H G . Forced convection heat transfer with phase-change-material slurries: turbulent flow in a circular tube[J]. Int. J. Heat Mass Tran., 1994, 37(2): 207-215.
22 Charunyakorn P , Sengupta S , Roy S K . Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts[J]. Int. J. Heat Mass Tran., 1991, 34: 819–833.
23 Zhang Y , Faghri A . Analysis of forced convection heat transfer in microencapsulated phase change material suspensions[J]. J. Thermophys. Heat Tran., 1995, 9: 727–732.
24 Roy S K , Avanic B L . Laminar forced convection heat transfer with phase change material suspensions[J]. Int. Commun. Heat Mass Tran., 2001, 28: 895–904.
25 Hu X , Zhang Y . Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. Int. J. Heat Mass Tran., 2002, 45: 3163-3172.
26 Sabbah R , Seyed-Yagoobi J , Al-Hallaj S . Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: numerical study[J]. J. Heat Tran., 2011, 133(12): 121702.
27 Zeng R L , Wang X , Chen B J , et al . Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux[J]. Appl. Energ., 2009, 86(12): 2661-2670.
28 方玉堂, 万伟军 . 潜热型功能热流体的研究进展[J].材料导报, 2009, 23(8): 108.
Fang Y T , Wan W J . Research progress of latent heat functional thermal fluids[J]. Materials Reports, 2009, 23(8): 108.
29 Wang X , Niu J , Li Y , et al . Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube [J]. Int. J. Heat Mass Tran., 2007, 50(13/14): 2480-2491.
30 刘丽, 王亮, 王艺斐, 等 . 基液为丙醇/水的相变微胶囊悬浮液的制备、稳定性及热物性[J]. 功能材料, 2014, 45(1): 109-113.
Liu L , Wang L , Wang Y F , et al . Preparation, stability and thermophysical properties of propanol/water phase change microcapsule suspension[J]. Journal of Function Materials, 2014, 45(1): 109-113.
31 Alquaity A B S , Al‐Dini S A , Yilbas B S . Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow[J]. Int. J. Numer. Method. H., 2013, 23(2): 233-247.
32 Morsi S A , Alexander A J . An investigation of particle trajectories in two-phase flow systems[J]. J. Fluid Mech., 2006, 55(2): 193-208.
33 岑可法, 樊建人 . 工程气固多相流动的理论及计算[M]. 杭州: 浙江大学出版社, 1990.
Cen K F , Fan J R . Theory and Calculation of Engineering Gas-Solid Multiphase Flow[M]. Hangzhou: Zhejiang University Press, 1990.
34 Guyer E C , Brownell D L . Handbook of Applied Thermal Design [M]. New York: McGraw-Hill, 1998.
35 Ma Z W , Zhang P . Modeling the heat transfer characteristics of flow melting of phase change material slurries in the circular tubes[J]. Int. J. Heat Mass Tran., 2013, 64(Complete): 874-881.
36 Ho C J , Huang J B , Tsai P S , et al . Water-based suspensions of Al2O3, nanoparticles and MEPCM particles on convection effectiveness in a circular tube[J]. Int. J. Therm. Sci., 2011, 50(5): 736-748.
37 Ho C J , Lin J F , Chiu S Y . Heat transfer of solid–liquid phase-change material suspensions in circular pipes: effects of wall conduction[J]. Numer. Heat Tr. A-Appl., 2004, 45(2): 171-190.
38 Ma F , Zhang P , Shi X J . Flow and heat transfer characteristics of micro-encapsulated phase change material slurry and energy transport evaluation[J]. Energy Procedia, 2017, 105: 4607-4614.
[1] 亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
[2] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[3] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[4] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[5] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[6] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[7] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
[8] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[9] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[10] 李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
[11] 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408.
[12] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
[13] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[14] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[15] 张文铖,龚俊波,董伟兵,吴送姑. 凝胶对结晶过程影响的研究进展[J]. 化工学报, 2020, 71(2): 487-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭诤, 张根旺, 孙彦. 高纯度共轭亚油酸的规模化制备及其异构体的鉴定[J]. CIESC Journal, 2003, 11(2): 130 -135 .
[2] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[3] 钱新明, 刘牧, 刘振翼. 隧道内液化天然气管道泄漏火灾温度场的数值模拟 [J]. 化工学报, 2009, 60(12): 3184 -3188 .
[4] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[5] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[6] 邓先和,邓颂九. 管间支撑物的结构对横纹槽管管束传热强化性能的影响 [J]. CIESC Journal, 1992, 43(1): 62 -68 .
[7] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[8] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[9] 王栋, 李蒙, 戚利利, 钱付平. 二氧化碳制冷系统毛细管的设计及实验研究[J]. 化工学报, 2011, 62(10): 2753 -2758 .
[10] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .