化工学报 ›› 2020, Vol. 71 ›› Issue (2): 614-625.doi: 10.11949/0438-1157.20190960

• 流体力学与传递现象 • 上一篇    下一篇

柔性Rushton搅拌桨的功耗与流场特性研究

杨锋苓1,2,3(),张翠勋4,苏腾龙1   

  1. 1.山东大学机械工程学院,山东 济南 250061
    2.高效洁净机械制造教育部重点实验室(山东大学),山东 济南 250061
    3.山东大学机械工程国家级实验教学示范中心,山东 济南 250061
    4.山东天力能源股份有限公司,山东 济南 250100
  • 收稿日期:2019-08-21 修回日期:2019-09-27 出版日期:2020-02-05 发布日期:2019-10-12
  • 通讯作者: 杨锋苓 E-mail:fly@sdu.edu.cn
  • 作者简介:杨锋苓(1979—),男,博士,副教授, fly@sdu.edu.cn
  • 基金资助:
    山东省重点研发计划项目(2016GGX103035)

Power and flow characteristics of flexible-blade Rushton impeller

Fengling YANG1,2,3(),Cuixun ZHANG4,Tenglong SU1   

  1. 1.School of Mechanical Engineering,Shandong University,Jinan 250061,Shandong, China
    2.Key Laboratory of High-Efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, Jinan 250061, Shandong, China
    3.National Experimental Teaching Demonstration Center of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
    4.Shandong Tianli Energy Co. , Ltd. , Jinan 250100, Shandong, China
  • Received:2019-08-21 Revised:2019-09-27 Online:2020-02-05 Published:2019-10-12
  • Contact: Fengling YANG E-mail:fly@sdu.edu.cn

摘要:

基于传统的Rushton桨,开发了一种柔性叶片Rushton搅拌桨。采用数值模拟方法研究了柔性桨的功耗及层流和湍流流场特性,并分别采用扭矩测量法和粒子图像测速法进行了实验验证。结果表明,对于实验规模的搅拌容器,当介质黏度与甘油接近时,可用橡胶作为柔性桨叶制作材料。Reynolds数≤100时,柔性桨的功耗大于刚性桨;Reynolds数大于该值后,柔性桨的功耗小于刚性桨。柔性桨叶对被搅拌流体具有自适应特性,流固耦合作用下产生的变形增加了流体的径向流动能力。搅拌低黏度流体时,柔性桨能提升近桨区流体的速度,增加桨叶远端流体的循环流动能力;搅拌高黏度流体时,近桨区和桨叶远端流体的速度均大于刚性桨。就尾涡而言,柔性桨产生的涡量较小,耗能少。

关键词: 搅拌容器, 柔性Rushton搅拌桨, 功耗, 流场, 实验验证, 计算流体力学

Abstract:

Based on the traditional Rushton impeller, a flexible-blade Rushton impeller was developed. The emphasis was layed on characterization of the power and flow characteristics of this flexible-blade Rushton impeller. The power consumption as well as laminar and turbulent flow fields was numerically investigated by using the computational fluid dynamics (CFD) technique. Besides, they were experimentally validated by employing the dynamic torque sensor and particle image velocimetry (PIV), respectively. The results show that, when the viscosity of the fluid medium is close to that of glycerin, rubber can be used as the material for making flexible blade for the experimental scale stirred vessel. Power consumption of flexible-blade impeller is greater than the rigid impeller when Reynolds number is no more than 100. However, after that value, with the increase of Reynolds number, flexible-blade impeller consumes less power. The fluid-structure interaction (FSI) makes the flexible blades adaptable to the agitated fluid by deformation and accordingly, increases the radial flow capacity of the fluid. Specifically, when the viscosity fluid is low, flexible blade impeller can improve velocity of fluid near the blade and improve circulation capacity of fluid away from the impeller. When the agitated fluid has high viscosity, flexible-blade impeller can increase fluid velocity both near and far from the blade. As far as tailing vortex is concerned, flexible-blade impeller produces small magnitude vortex and is less energy consuming.

Key words: stirred vessel, flexible-blade Rushton impeller, power consumption, flow field, experimental validation, computational fluid dynamics

中图分类号: 

  • TQ 027

图1

搅拌容器及柔性叶片Rushton桨"

表1

柔性桨叶材料物性参数"

柔性桨叶

材料

物性参数
弹性模量 E/MPa 泊松比密度 ρ/(kg·m -3)
超高分子量聚乙烯1~1.25×10 50.3935~945
硬聚氯乙烯3.14~3.92×10 30.3191350~1400
橡胶7.80.47900~1000
硅橡胶2.10.481200

图2

网格划分"

图3

双向流固耦合分析设置"

图4

网格划分"

表2

转矩测量工况"

Reynolds数

转速 N/

(r·s -1)

密度 ρ/

(kg·m -3)

动力黏度 μ/(Pa·s) 搅拌介质
100.51263.31.412甘油
4021263.31.412甘油
10051263.31.412甘油
25421236.790.21990%甘油水溶液
90621210.280.06080%甘油水溶液
236721183.770.02370%甘油水溶液
473541183.770.02370%甘油水溶液
111960.5998.20.001
447842998.20.001
1119615998.20.001

表3

功率准数的数值模拟及实验测量值"

Reynolds数功率准数 N P

刚性桨

(模拟)

刚性桨

(实验)

柔性桨

(模拟)

柔性桨

(实验)

105.7796.2416.1986.570
402.9213.1843.3503.618
1002.5452.7232.5692.749
2542.3392.5732.2132.412
9062.0352.1981.7941.973
23671.7551.9131.4521.597
47351.5001.6041.2531.353
111961.4451.5601.2371.324
447841.2911.4081.1701.240
1119611.2041.3251.1901.297

图5

功率准数随Reynolds数变化曲线"

图6

介质为水时的速度矢量图/(m·s -1) "

图7

介质为甘油时的速度矢量图/(m·s -1) "

图8

径向位置 r=90 mm处介质为水时的速度分布 "

图9

轴向高度 z=150 mm处介质为水时的速度分布 "

图10

径向位置 r=90 mm处介质为甘油时的速度分布 "

图11

轴向高度 z=150 mm处介质为甘油时的速度分布 "

图12

轴向高度 z=150 mm处介质分别为水(a)和甘油(b)时径向速度分布的PIV实验结果 "

图13

搅拌介质为水时不同相位角处的涡量云图/s -1"

图14

搅拌介质为甘油时不同相位角处的涡量云图/s -1"

1 朱俊, 周政霖, 刘作华, 等. 刚柔组合搅拌桨强化流体混合的流固耦合行为[J]. 化工学报, 2015, 66( 10): 3849- 3856.
Zhu J, Zhou Z L, Liu Z H, et al. Fluid-structure interaction in liquid mixing intensified by flexible-rigid impeller[J]. CIESC Journal, 2015, 66( 10): 3849- 3856.
2 Liu Z H, He H X, Zhu J, et al. Energy saving and noise reduction of flow mixing performance intensified by rigid-flexible combination impeller[J]. Asia-Pac. J. Chem. Eng., 2015, 10( 5): 700- 708.
3 Stefanie B, Dirk W. CFD analysis of inter-phase mass transfer and energy dissipation in a milliliter-scale stirred-tank reactor for filamentous microorganisms[J]. Chem. Eng. Res. Des., 2014, 92( 2): 240- 248.
4 Claudio C, Giuseppina M, Tapio W, et al. Analysis of solid concentration distribution in dense solid-liquid stirred tanks by electrical resistance tomography[J]. Chem. Eng. Sci., 2014, 119( 8): 53- 64.
5 Nester R G. High-speed flexible-blade stirrer and stirrer seal for high-vacuum use[J]. Rev. Sci. Instrum., 1956, 27( 12): 1080- 1081.
6 Young R N, Ga A. Method and apparatus for aeration using flexible blade impeller: US5993158[P]. 1999-11-30.
7 Bullock L S, Schober S D, Hansen T L. Flexible agitator fins: D477697[P]. 2003-07-22.
8 Driss Z, Karray S, Kchaou H, et al. Computer simulations of fluid-structure interaction generated by a flat-blade paddle in a vessel tank[J]. Int. Rev. Mech. Eng., 2007, 1( 6): 608- 617.
9 Karray S, Driss Z, Kchaou H, et al. Numerical simulation of fluid-structure interaction in a stirred vessel equipped with an anchor impeller[J]. J. Mech. Sci. Technol., 2011, 25( 7): 1749- 1760.
10 Karray S, Driss Z, Kchaou H, et al. Hydromechanics characterization of the turbulent flow generated by anchor impellers[J]. Eng. Appl. Comput. Fluid Mech., 2011, 5( 3): 315- 328.
11 Karray S, Driss Z, Kaffel A, et al. Fluid-structure interaction in a stirred vessel equipped with a Rushton turbine[J]. Int. J. Mech. Appl., 2012, 2( 6): 129- 139.
12 Berger T, Fischer M, Strohmeier K. Fluid-structure interaction of stirrers in mixing vessels[J]. J . Pressure Vessel Technol., 2003, 125( 4): 440- 445.
13 Berger T, Strohmeier K. Numerical simulation of stirrer oscillations in consideration of fluid-structure-interaction and flexible restraint systems[C]. In: ASME 2003 Pressure Vessels and Piping Conference, 2003, 460: 29- 34.
14 刘作华, 杨鲜艳, 谢昭明, 等. 柔性桨与自浮颗粒协同强化高黏度流体混沌混合[J]. 化工学报, 2013, 64( 8): 2794- 2800.
Liu Z H, Yang X Y, Xie Z M, et al. Chaotic mixing performance of high-viscosity fluid synergistically intensified by flexible impeller and floating particles[J]. CIESC Journal, 2013, 64( 8): 2794- 2800.
15 刘作华, 曾启琴, 王运东, 等. 柔性桨强化高黏度流体混合的能效分析[J]. 化工学报, 2013, 64( 10): 3620- 3625.
Liu Z H, Zen Q Q, Wang Y D, et al. Energy efficiency analysis for high-viscosity fluid mixing enhanced by flexible impeller[J]. CIESC Journal, 2013, 64( 10): 3620- 3625.
16 刘作华, 曾启琴, 杨鲜艳, 等. 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65( 6): 2078- 2084.
Liu Z H, Zen Q Q, Yang X Y, et al. Flow field structure with rigid-flexible impeller and rigid impeller[J]. 2014, 65( 6): 2078- 2084.
17 刘仁龙, 李爽, 刘作华, 等. 穿流-柔性组合桨强化搅拌槽中流体混沌混合特性[J]. 化工学报, 2015, 66( 12): 4736- 4742.
Liu R L, Li S, Liu Z H, et al. Chaotic mixing enhanced by punched-flexible impeller in stirred vessel[J]. CIESC Journal, 2015, 66( 12): 4736- 4742.
18 刘作华, 许恢琴, 谷德银, 等. 单层钢丝柔性桨强化搅拌槽中流体混沌混合行为[J]. 化工学报, 2017, 68( 12): 4592- 4599.
Liu Z H, Xu H Q, Gu D Y, et al. Chaotic mixing performance enhanced by single-wire flexible impeller in stirred vessel[J]. CIESC Journal, 2017, 68( 12): 4592- 4599.
19 熊黠, 刘作华, 谷德银, 等. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70( 5): 1693- 1701.
Xiong X, Liu Z H, Gu D Y, et al. Chaotic mixing process of fly ash in acid leaching tank intensified by rigid-flexible impeller[J]. CIESC Journal, 2019, 70( 5): 1693- 1701.
20 赵婉丽. 柔性桨叶搅拌槽内流固耦合特性的研究[D]. 北京: 北京化工大学, 2017.
Zhao W L. Study of fluid-structure interaction characteristics of flexible blade in a stirred tank[D]. Beijing: Beijing University of Chemical Technology, 2017.
21 徐博航. 易形变桨叶搅拌槽内流场特性研究[D]. 北京: 北京化工大学, 2018.
Xu B H. Flow field characteristics in a stirred vessel with flexible blades[D]. Beijing: Beijing University of Chemical Technology, 2018.
22 Ghobadi N, Ogino C, Ogawa T, et al. Using a flexible shaft agitator to enhance the rheology of a complex fungal fermentation culture[J]. Bioprocess. Biosyst. Eng., 2016, 39( 11): 1793- 1801.
23 Ogawa T, Yamamoto M. Frictionless clean reactor “SWINGSTIR”[OL]. .
24 Staheli C C, Knudsen B M, Williams T G, et al. Fluid mixing system with flexible drive line and foldable impeller: 0117142[P]. 2015-04-30.
25 Rannade V V, Perrard M, Xureb C, et al. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine[J]. Chem. Eng. Res. Des., 2001, 79( 8): 957- 964.
26 Ng K, Fentiman N J, Lee K C, et al. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller[J]. Chem. Eng. Res. Des., 1998, 76( 6): 737- 747.
27 Derksen J J, Doelman M S, van den Akker H E A. Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank[J]. Exp. Fluids, 1999, 27( 6): 522- 532.
28 Yianneskis M, Popiolek Z, Withelaw J H. An experimental study of the steady and unsteady flow characteristics of stirred reactors[J]. J. Fluid Mech., 1987, 175: 537- 555.
29 Yianneskis M, Whitelaw J H. On the structure of the trailing vortices around Rushton turbine blades[J]. Chem. Eng. Res. Des., 1993, 71: 543- 550.
30 Escudié R, Bouyer D, Liné A. Characterization of trailing vortices generated by a Rushton turbine[J]. AIChE Journal, 2004, 50( 1): 75- 86.
[1] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[2] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
[3] 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632.
[4] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[5] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[6] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[7] 陈裕博, 杨昭, 翟瑞, 冯彪, 吕子建, 赵文仲, 葛滢滢. R290/R1234yf与矿物油的互溶性测试及评价方法[J]. 化工学报, 2019, 70(9): 3248-3255.
[8] 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411.
[9] 张明振, 黄冬梅, 胡毅伟, 原琪, 席合一, 沈利铭, 段鹏征. 点火位置对乳胶泡沫水平火蔓延规律的影响[J]. 化工学报, 2019, 70(7): 2802-2810.
[10] 刘培启, 何昕琛, 陈佳, 郭江涛, 席建宇, 胡大鹏. 锥芯可调型引射技术变工况适应性实验研究[J]. 化工学报, 2019, 70(6): 2252-2258.
[11] 孙立强, 王迪, 宋健斐, 王江云, 魏耀东. 旋风分离器有无灰斗对气相流场动态特性的影响[J]. 化工学报, 2019, 70(6): 2202-2210.
[12] 刘斌, 尤占平, 邓佳佳. 一维二氧化碳管道全孔破裂模型[J]. 化工学报, 2019, 70(6): 2174-2181.
[13] 佟颖, Ahmad Nouman, 鲁波娜, 王维. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
[14] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712.
[15] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周志伟, 武文良, 王军, 曾崇余. Tert-butylation of Toluene with Tert-butyl Alcohol over Realuminated H-mordenite Zeolite[J]. CIESC Journal, 2009, 17(2): 195 -199 .
[2] 李俊, 奚旦立, 石勇. 动态膜处理污水时阻力分布及污染机理 [J]. 化工学报, 2008, 59(9): 2309 -2315 .
[3] 刘毅, 王海清, 李平. 局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用 [J]. 化工学报, 2007, 58(11): 2846 -2851 .
[4] 王长泰,林诚. 固定床透过曲线的预测 [J]. CIESC Journal, 1986, 37(2): 183 -192 .
[5] 林瓦妹, 李科群, 谢荣建, 温清云, 罗行. 基于最大水回用规则的遗传算法用水网络优化 [J]. 化工学报, 2008, 59(2): 410 -414 .
[6] 王昌松, 魏明杰, 吕玲红, 陆小华. 化学非均一表面及其在化工中的应用 [J]. 化工学报, 2009, 60(12): 2945 -2951 .
[7] 吴江涛, 周永. 标准氢的黏度方程 [J]. 化工学报, 2011, 62(2): 301 -306 .
[8] . 华东理工大学简介 [J]. CIESC Journal, 1993, 44(5): 634 .
[9] 周云龙, 孙斌, 陆军. 改进BP神经网络在气液两相流流型识别中的应用 [J]. 化工学报, 2005, 56(1): 110 -115 .
[10] 余淑娴, 邱祖民, 李凤仪, 余祖兵, 孙韡. 甲基三氯硅烷、甲基乙烯基二氯硅烷、甲苯的二元及三元体系等压汽液平衡 [J]. 化工学报, 2003, 54(6): 846 -849 .