化工学报 ›› 2020, Vol. 71 ›› Issue (2): 864-870.doi: 10.11949/0438-1157.20190956

• 材料化学工程与纳米技术 • 上一篇    下一篇

面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究

杨生1(),邵雪峰1,范利武1,2()   

  1. 1.浙江大学能源工程学院热工与动力系统研究所,浙江 杭州 310027
    2.能源清洁利用国家重点实验室,浙江 杭州 310027
  • 收稿日期:2019-08-21 修回日期:2019-10-16 出版日期:2020-02-05 发布日期:2019-12-24
  • 通讯作者: 范利武 E-mail:21827004@zju.edu.cn;liwufan@zju.edu.cn
  • 作者简介:杨生(1995—),男,硕士研究生, 21827004@zju.edu.cn
  • 基金资助:
    浙江省杰出青年科学基金项目(LR17E060001)

Thermal endurance of binary eutectic phase change material D-dulcitol/inositol for medium temperature latent heat storage

Sheng YANG1(),Xuefeng SHAO1,Liwu FAN1,2()   

  1. 1.Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.State Key Laboratory of Clean Energy Utilization, Hangzhou 310027, Zhejiang, China
  • Received:2019-08-21 Revised:2019-10-16 Online:2020-02-05 Published:2019-12-24
  • Contact: Liwu FAN E-mail:21827004@zju.edu.cn;liwufan@zju.edu.cn

摘要:

相变材料的热稳定性在实际相变储热应用中至关重要。通过熔融共混的方法制备了可用于中温储热的D-半乳糖醇(69%(mol))/肌糖醇二元共晶相变材料,使用真空管式炉分别在463、473、483和493 K温度下将该共晶混合物加热5、10、15和20 h。然后采用差示扫描量热仪测量试样的熔化焓,并采用基于焓值变化的恒温动力学模型分析其焓值热降解特性,从而对其热稳定性进行评价。此外,采用添加抗氧化剂1010(1.0%(质量))的方法提高共晶糖醇的热稳定性。结果表明,在463 K温度下加热20 h后,共晶糖醇焓值下降24.9%;添加抗氧化剂后,其焓值仅下降8.25%。采用恒温动力学模型计算发现,共晶糖醇在463 K温度下焓值下降一半所用的时间为154 h,添加抗氧化剂1010后,其热降解时间增加约4倍。当加热温度升高至473、483、493 K时,热降解时间分别提高约2.6、1.6、1.1倍,热降解速率 k值分别降低62.65%、40.42%、6.51%。结果表明添加抗氧化剂可有效提高共晶糖醇的热稳定性。

关键词: 热稳定性, 糖醇, 二元共晶混合物, 相变材料, 储热, 抗氧化剂

Abstract:

Thermal endurance of phase change materials is of significance in real-world latent heat storage. The binary eutectic mixtures of D-dulcitol/inositol for medium temperature latent heat storage was prepared by mixing their melts at given molar ratio and then cooled to be solidified in the present study. The mixture samples were heated using a vacuum tube furnace at four temperatures (463, 473, 483 and 493 K), and for each temperature point, the heating was lasted for 5, 10, 15 and 20 h. The latent heat of fusion of the mixtures were measured by a differential scanning calorimetry. The thermal degradation characteristics of the mixtures were analyzed using a constant temperature kinetic model based on the change of latent heat of fusion. In addition, the thermal endurance of the mixture was improved by adding the antioxidant 1010 (at 1.0%(mass)). The results showed that after heating at 463 K for 20 h, the enthalpy of the eutectic sugar alcohol decreased by 24.9%; after adding the antioxidant, its enthalpy decreased by only 8.25%. It was determined that the thermal degradation duration of the mixture was 154 h when its latent heat of fusion decreased a half at 463 K. By contrast, the duration increased about 4 times after adding the antioxidant. With temperature increasing to 473, 483 and 493 K, the thermal degradation durations of the mixture increased about 2.6, 1.6, and 1.1 times, and their thermal degradation rates decreased by 62.65%, 40.42%, 6.51%, respectively. The results showed that using the antioxidant 1010 can improve the thermal endurance of the mixture sugar alcohol.

Key words: thermal endurance, sugar alcohol, binary eutectic mixture, phase change material, latent heat storage, antioxidant

中图分类号: 

  • TK 124

表1

材料基本信息"

ReagentFormulaCAS numberTm/℃ L/(J/g)
D-dulcitolC 6H 14O 6608-66-2187.3±0.1350±2.1
inositolC 6H 14O 687-89-8224.5±0.2262±0.1
AO1010C 73H 108O 126693-19-8

图1

不同温度下共晶糖醇熔化焓值随加热时间的变化"

图2

添加抗氧化剂后ln( L t/ L0)- t曲线的比较 "

表2

热降解速率系数"

温度/K

k/无抗

氧化剂1010

1.0%(质量)

抗氧化剂1010

k值降低

幅度/%

4630.004290.0010974.59
4730.008220.0030762.65
4830.016650.0099240.42
4930.02240.020986.51

图3

添加抗氧化剂前后共晶糖醇的 ln k- T-1曲线 "

图4

不同加热温度下熔化焓值的衰减曲线"

图5

热处理后共晶糖醇的外观变化"

1 Sharma R K, Ganesan P, Tyagi V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage [J]. Energy Conversion and Management, 2015, 95: 193- 228.
2 杨磊, 张小松. 多熔点相变材料堆积蓄热床蓄热性能分析[J]. 化工学报, 2012, 63( 4): 1032- 1037.
Yang L, Zhang X S. Charging performance of packed thermal storage unit phase change material having different melting points[J]. CIESC Journal, 2012, 63( 4): 1032- 1037.
3 胡芃, 卢大杰, 赵盼盼, 等. 组合式相变材料最佳相变温度的热力学分析[J]. 化工学报, 2013, 64( 7): 2322- 2327.
Hu P, Lu D J, Zhao P P, et al. Thermodynamic analysis on optimum phase change temperature for multiple phase change materials[J]. CIESC Journal, 2013, 64( 7): 2322- 2327.
4 黄艳, 章学来. 十二醇-癸酸-纳米粒子复合相变材料传热性能[J]. 化工学报, 2016, 67( 6): 2271- 2276.
Huang Y, Zhang X L. Heat transfer property of lauryl alcohol-capric acid-nanoparticle composite phase change materials[J]. CIESC Journal, 2016, 67( 6): 2271- 2276.
5 桑丽霞, 李锋. 碳酸盐复合蓄热材料的制备及热物性研究[J]. 化工学报, 2018, 69: 129- 135.
Sang L X, Li F. Study on preparation and thermal properties of carbonates composite heat storage materials[J]. CIESC Journal, 2018, 69: 129- 135.
6 熊亚选, 王振宇, 徐鹏, 等. 添加纳米MgO和SiO 2颗粒对二元碳酸盐(Li 2CO 3-K 2CO 3)比热容的影响 [J]. 化工学报, 2018, 69( 12): 40- 46.
Xiong Y X, Wang Z Y, Xu P, et al. Effect of nano-MgO and SiO 2 particles on specific heat capacity of binary carbonate (Li 2CO 3-K 2CO 3) [J]. CIESC Journal, 2018, 69( 12): 40- 46.
7 Wang Z Q, Zhou N J, Guo J, et al. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat[J]. Energy, 2012, 40( 1): 107- 115.
8 何媚质, 杨鲁伟, 张振涛. 无机相变材料CaCl 2·6H 2O的过冷特性 [J]. 化工学报, 2017, 68( 11): 4016- 4024.
He M Z, Yang L W, Zhang Z T. Supercooling characteristics of inorganic phase change material CaCl 2·6H 2O [J]. CIESC Journal, 2017, 68( 11): 4016- 4024.
9 丁晴, 方昕, 闫晨, 等. 石墨纳米片尺寸对复合相变材料储热特性的影响[J]. 化工学报, 2015, 66( 6): 2023- 2030.
Ding Q, Fang X, Yan C, et al. Effects of graphite nanosheet size on thermal storage property of composite PCMs[J]. CIESC Journal, 2015, 66( 6): 2023- 2030.
10 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70( 9): 3553- 3564.
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70( 9): 3553- 3564.
11 杨波, 李汛, 赵军. 移动蓄热技术的研究进展[J]. 化工进展, 2013, 32( 3): 515- 520.
Yang B, Li X, Zhao J. Research progress of mobilized thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2013, 32( 3): 515- 520.
12 Del Barrio E P, Cadoret R, Daranlot J, et al. New sugar alcohols mixtures for long-term thermal energy storage applications at temperatures between 70℃ and 100℃ [J]. Solar Energy Materials and Solar Cells, 2016, 155: 454- 468.
13 Diarce G, Gandarias I, Campos-Celador A, et al. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50—90℃ temperature range [J]. Solar Energy Materials and Solar Cells, 2015, 134: 215- 226.
14 Paul A, Shi L, Bilawski C W. A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage [J]. Energy Conversion and Management, 2015, 103: 139- 146.
15 Dacunha J P, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials—a review [J]. Applied Energy, 2016, 177: 227- 238.
16 Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage [J]. Progress in Materials Science, 2014, 65: 67- 123.
17 Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews, 2009, 13( 2): 318- 345.
18 Ahmet S, Alkan C, Karaipekli A, et al. Microencapsulated n-octacosane as PCM for thermal energy storage [J]. Solar Energy, 2009, 83( 10): 1757- 1763.
19 彭强, 杨晓西, 丁静, 等. 三元硝酸熔盐高温热稳定性实验研究与机理分析[J]. 化工学报, 2013, 64( 5): 1507- 1512.
Peng Q, Yang X X, Ding J, et al. Experimental study and mechanism analysis for high-temperature thermal stability of ternary nitrate salt[J]. CIESC Journal, 2013, 64( 5): 1507- 1512.
20 Khan Z, Ghafoor A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility[J]. Energy Conversion and Management, 2016, 115: 132- 158.
21 Yang F, Weilai X, Jiangying W, et al. Polyethylene Glycol based graphene aerogel confined phase change materials with high thermal stability[J]. Journal of Nanoscience and Nanotechnology, 2018, 18( 5): 3341- 3347.
22 Be Kovsky D, Ostry M, Kalabova, et al. Thermal stability of attic spaces with integrated PCMs during the climatic year[J]. Advanced Materials Research, 2013, 649: 175- 178.
23 Dong Z. Thermal stability of fatty acid molecular alloy used as phase change material[J]. Journal of Building Materials, 2008, 11: 283- 287.
24 Akiyama T. Estimation of thermal endurance of multicomponent sugar alcohols as phase change materials[J]. Applied Thermal Engineering, 2015, 75: 481- 486.
25 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70( 1): 300- 307.
Zhou S X, Zhang X L, Liu S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70( 1): 290- 297.
26 吴东灵, 李廷贤, 何峰, 等. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69( 7): 2860- 2868.
Wu D L, Li T X, He F, et al. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage[J]. CIESC Journal, 2018, 69( 7): 2860- 2868.
27 Shao X F, Wang C, Yang Y J, et al. Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature latent heat storage(Ⅰ): Non-isothermal melting and crystallization behaviors[J]. Energy, 2018, 160: 1078- 1090.
28 Shao X F, Yang S, Wang C, et al. Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature thermal energy storage (Ⅱ): Isothermal melting and crystallization behaviors[J]. Energy, 2019, 180, 572- 583.
29 Sagara A, Nomura T, Tsubota M, et al. Improvement in thermal endurance of D-mannitol as phase-change material by impregnation into nanosized pores[J]. Materials Chemistry and Physics, 2014, 146( 3): 253- 260
30 Neumann H, Burger D, Taftanazi Y, et al. Thermal stability enhancement of D-mannitol for latent heat storage applications[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109913.
[1] 毛建新, 袁子卿, 严红绡, 周仁贤. 添加Sm对Pt /SBA-15催化苯完全氧化反应活性和热稳定性的影响[J]. 化工学报, 2020, 71(1): 306-313.
[2] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[3] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[4] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564.
[5] 赵柏岑, 丁静, 魏小兰, 刘彬, 陆建峰, 王维龙. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091.
[6] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[7] 张亮, 史忠科. 相变储能技术在汽车节能中的应用进展[J]. 化工学报, 2018, 69(S2): 17-25.
[8] 崔艳琦. 相变控温调湿建筑复合材料的研究进展[J]. 化工学报, 2018, 69(S1): 1-7.
[9] 张继宗, 常厚春, 常建民, 龙金星, 李雪辉. 生物油对生物油基淀粉胶黏剂性能的影响[J]. 化工学报, 2018, 69(S1): 123-128.
[10] 张亮, 史忠科. 被动式汽车相变材料储能器的实验分析[J]. 化工学报, 2018, 69(S1): 176-181.
[11] 吴东灵, 李廷贤, 何峰, 王如竹. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69(7): 2860-2868.
[12] 冯飙, 邵雪峰, 朱子钦, 范利武. 赤藓糖醇微观固液相变及热传导的分子动力学研究[J]. 化工学报, 2018, 69(6): 2388-2395.
[13] 李洪伟, 徐飞扬, 夏曼曼, 程扬帆, 龚悦. 用C80量热仪研究重铵油炸药的热分解特性[J]. 化工学报, 2018, 69(4): 1799-1805.
[14] 王建, 郭航, 叶芳, 马重芳. 相变材料对车用动力电池组内温度分布影响数值模拟[J]. 化工学报, 2018, 69(4): 1611-1619.
[15] 熊亚选, 王振宇, 徐鹏, 吴玉庭, 丁玉龙, 马重芳. 添加纳米MgO和SiO2颗粒对二元碳酸盐(Li2CO3-K2CO3)比热容的影响[J]. 化工学报, 2018, 69(12): 4959-4965.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王东民, 董丽宁, 全晓军. 改性SiO2纳米颗粒沸腾沉积层的形成原理及其沸腾换热[J]. 化工学报, 2018, 69(10): 4200 -4205 .
[2] 王帅, 王栋, 董宝光, 李瑞华. 基于管内相分隔的径向压差在多相流测量的应用[J]. 化工学报, 2018, 69(12): 5049 -5055 .
[3] 李登稳, 程振民. 文丘里型气液分布器的实验与数值研究[J]. 化工学报, 2018, 69(11): 4625 -4632 .
[4] 沈秋颖, Tahir Muhammad Faran, Cumbula Armando José, 付涛涛, 姜韶堃, 朱春英, 马友光. 对称分支并行微通道中气液两相流的均匀性规律[J]. 化工学报, 2018, 69(11): 4640 -4647 .
[5] 翁润滢, 孙斌, 赵玉晓, 张竟月, 文英杰. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065 -5072 .
[6] 闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913 -1922 .
[7] 孔大力, 罗坤, 林俊杰, 王帅, 胡陈枢, 李德波, 樊建人. 双流化床生物质气化的三维全循环数值模拟[J]. 化工学报, 0, (): 0 .
[8] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702 -1712 .
[9] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761 -1771 .
[10] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772 -1778 .