化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1288-1296.doi: 10.11949/0438-1157.20190948

• 过程系统工程 • 上一篇    下一篇

采用换热器负荷图指导换热网络改造的新方法

李保红(),李继文   

  1. 大连民族大学化学工程系,辽宁 大连 116600
  • 收稿日期:2019-08-20 修回日期:2019-11-05 出版日期:2020-03-05 发布日期:2019-11-28
  • 通讯作者: 李保红 E-mail:libh@dlnu.edu.cn
  • 作者简介:李保红(1973—),男,博士,教授,libh@dlnu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(21676050)

New method for heat exchanger network retrofit using heat exchanger load diagram

Baohong LI(),Jiwen LI   

  1. Department of Chemical Engineering, Dalian Minzu University, Dalian 116600, Liaoning, China
  • Received:2019-08-20 Revised:2019-11-05 Online:2020-03-05 Published:2019-11-28
  • Contact: Baohong LI E-mail:libh@dlnu.edu.cn

摘要:

目前大部分图形工具仅适用于以节能为目标的换热网络(HEN)设计或者改造。能量回收量的增加往往伴随换热单元数的增多,而换热单元数对设备投资费有较大影响。采用换热器负荷图(HELD)提出一种系统化的换热网络改造新方法。新方法基于夹点分析,在改造区间中选择匹配目标,重新构建改造用HELD,从而简化问题;通过在水平方向上平移热流股曲线实现跨夹点负荷的重新分配,完成节能目标,并结合经验规则,尽可能减少改造后换热网络的换热器数目。以一个工业造纸厂为例,对其进行节能改造方案设计,相较于文献报道结果,得到两个节能目标值相近且换热器改动数目更少的新方案,验证了新方法的有效性。

关键词: 传热, 过程系统, 优化, 改造, 换热器负荷图

Abstract:

At present, most graphic tools are only suitable for the design or retrofit of heat exchange networks (HEN) with the goal of saving energy. The increase of energy recovery is often accompanied by the increase of the number of heat exchange units, and the number of heat exchange units obviously affects the total equipment costs. A new method for the retrofit of heat exchanger networks by using heat exchanger load diagram (HELD) is proposed. Based on pinch analysis, selecting targeted matches and reconstructing the HELD, the problem is simplified. By shifting the heat flow curve horizontally, those cross-pinch heat loads are re-matched to reduce utility consumption, and the number of heat exchangers in the retrofitted heat exchanger network can be reduced as much as possible with the help of some heuristics. An industrial case of paper mill is retrofitted to demonstrate the effectiveness of the proposed approach. Compared with reported solutions, two new retrofit networks with similar energy saving values and fewer heat exchangers are obtained.

Key words: heat transfer, process system, optimization, retrofit, heat exchanger load diagram

中图分类号: 

  • TQ 021.8

图4

造纸厂的HELD"

图1

用HELD表示最大换热负荷准则"

图2

用HELD来表示规则2"

表1

造纸厂的流股数据"

流股名称实际温度/℃

热负荷

Q/kW

热容流率

FCp/(kW/℃)

虚拟温度/℃
TsTtTs*Tt*
WW高温段5839.97951439.35334.9
WW低温段39.9301283129.634.925
RC6030225475.15525
EX1804010216255.47030
EX2804010216255.47030
PS70207523150.56515
BW116110745214.91666
HW50612032184.75566
OI305072736.43555
BB2080376362.73090
PV20125494647.130135
RP11606306128.71665

图3

造纸厂的原始网格图"

图5

造纸厂简化后的HELD"

图6

造纸厂改造方案1的简化HELD"

图7

改造方案1的HEN网格图"

图8

造纸厂改造方案2的简化HELD"

图9

改造方案2的HEN网格图"

图10

方案3简化后的HELD"

图11

改造方案3的HEN网格图"

表2

不同方案换热器的换热面积变化率"

换热器编号换热面积变化率/%
方案1方案2方案3
C3-22.3-22.3-17.9
C4-2.6-12.4-8.8
E112.512.50
E282.917.00
H1-62.9-73.0
H20-45.7

表3

不同方案的换热器变更情况"

方案编号新增换热器/个利用的旧换热器/个改造换热器/个换热器总数/个
113114
224115
322216
1 王文堂.化工技术节能手册[M].北京:化学工业出版社,2011.
Wang W T.Manual of Energy Conservation in Chemical Technology[M].Beijing:Chemical Industry Press,2011.
2 Law R,Harvey A,Reay D.Opportunities for low-grade heat recovery in the UK food processing industry[J].Applied Thermal Engineering,2013,53:188-196.
3 刘新文,罗行,马虎根.换热网络改造可行性研究[J].节能,2013,32(3):12-15.
Liu X W,Luo X,Ma H G.Studies on the retrofit feasibility of heat exchanger networks[J].Energy Conservation,2013,32(3):12-15.
4 Briones V,Kokossis A.A new approach for the optimal retrofit of heat exchanger networks[J].Computers & Chemical Engineering,1996,20(96):S43-S48.
5 Smith R.Recent developments in process integration design techniques[C]//International Process Integration Jubilee Conference.Sweden,2013.
6 王彧斐,冯霄.换热网络集成与优化研究进展[J].化学反应工程与工艺,2014,30(3):271-280.
Wang Y W,Feng X.Advances in heat exchange network integration and optimization[J].Chemical Reaction Engineering and Process,2014,30(3):271-280.
7 刘新文,罗行,马虎根.两种换热网络综合优化方法对比研究[J].上海理工大学学报,2015,37(3):238-244.
Liu X W,Luo X,Ma H G.A comparative study of two comprehensive optimization methods for heat exchanger networks[J].Journal of Shanghai University of Technology,2015,37(3):238-244.
8 霍兆义,赵亮,尹洪超.基于分级超结构的换热网络改造优化[J].热科学与技术,2016,15(1):19-25.
Huo Z Y,Zhao L,Yin H C.Renovation and optimization of heat exchanger networks based on hierarchical superstructure[J].Thermal Science and Technology,2016,15(1):19-25.
9 蒋宁,韩文巧,郭风元,等.基于实际热负荷分布的换热网络优化改造[J].化工进展,2018,37(8):2935-2941.
Jiang N,Han W Q,Guo F Y,et al.Heat exchange network improvement based on actual heat load distribution[J].Chemical Industry and Engineering Progress,2018,37(8):2935-2941.
10 蒋宁,谢小东,范伟,等.数据驱动的固定拓扑结构换热网络优化改造方法[J].化工进展,2019,38(10):4452-4460.
Jiang N,Xie X D,Fan W,et al.Data-driven fixed-topology heat exchanger network optimization method[J].Chemical Industry and Engineering Progress,2019,38(10):4452-4460.
11 Čuček L,Boldyryev S,Klemeš J J,et al.Approaches for retrofitting heat exchanger networks within processes and Total Sites[J].Journal of Cleaner Production,2019,211:884-894.
12 Akpomiemie M O,Smith R.Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach[J].Appl. Energy,2016,165:22-35.
13 Wan Alwi S R,Manan Z A.STEP-A new graphical tool for simultaneous targeting and design of a heat exchanger network[J].Chemical Engineering Journal,2010,162:106-121.
14 Lai Y Q,Manan Z A,Wan Alwi S R.Simultaneous diagnosis and retrofit of heat exchanger network via individual process stream mapping[J].Energy,2018,155:1113-1128.
15 Li B H,Chang C T.Retrofitting industrial heat exchanger network based on pinch analysis[J].Industrial & Engineering Chemistry Research,2010,49(8):3967-3971.
16 Yong J Y,Varbanov P S,Klemes J J.Heat exchanger network retrofit supported by extended grid diagram and heat path development[J].Applied Thermal Engineering,2015,89:1033-1045.
17 Gadalla M A.A new graphical method for pinch analysis applications: heat exchanger network retrofit and energy integration[J].Energy,2015,81:159-174.
18 Bonhivers J C,Alva-Argaez A,Srinivasan B,et al.New analysis method to reduce the industrial energy requirements by heat-exchanger network retrofit(Part 2): Stepwise and graphical approach[J].Applied Thermal Engineering,2017b,119:670-686.
19 冯霄,王彧斐.化工节能原理与技术[M]. 第4版. 北京: 化学工业出版社,2015.
Feng X,Wang Y F.Principles and Technologies of Chemical Energy Conservation[M].4th ed.Beijing:Chemical Industry Press,2015.
20 Kemp I C.Pinch analysis and process integration-a user guide on process integration for the efficient use of energy[J].Journal of Cleaner Production,2016,110:203
21 Li B H,Chota Castillo Y E,Chang C T.An improved design method for retrofitting industrial heat exchanger networks based on pinch analysis[J].Chemical Engineering Research and Design,2019,148:260-270.
22 王春花,华贲.换热网络优化设计方法及多换热网络能量集成的研究进展[J].石油化工设备,2009,38(5):50-57.
Wang C H,Hua B.Research progress in optimization design methods of heat exchanger networks and energy integration of multi-heat exchanger networks[J].Petrochemical Equipment,2009,38(5):50-57.
23 Linnhoff B,Hindmarsh E.The pinch design method for heat exchanger networks[J].Chem. Eng. Sci.,1983,38(5):745-763.
24 Sama D A,Qian S,Gaggioli R.A common-sense second law approach for improving process efficiencies[C]//Proceedings of the International Symposium on Thermodynamics Analysis and Improvement of Energy Systems.Beijing,1989:520-531.
25 Lal N S,Walmsley T G,Walmsley M R W,et al.A novel heat exchanger network bridge retrofit method using the modified energy transfer diagram[J].Energy,2018,155:190-204.
[1] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[2] 程华农, 邱娜娜, 岳金彩, 郑世清. 采用响应面法降低湿法氧化脱硫中Na2S2O3生成量[J]. 化工学报, 2020, 71(4): 1762-1771.
[3] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[4] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[5] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[6] 贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
[7] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[8] 李英泽, 杨路, 王琦, 杨思宇. BGL炉煤气化过程建模和模拟[J]. 化工学报, 2020, 71(3): 1174-1188.
[9] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[10] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[11] 鲁玉莹, 余黎明, 杨加可, 曾武松, 陆江银. 响应面法优化制备LDHs-CRMA复合改性沥青及其表征[J]. 化工学报, 2020, 71(3): 1362-1369.
[12] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
[13] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[14] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[15] 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖新颜, 刘健飞. Synthesis and Characterization of Fluorine-containing Polyacrylate Emulsion with Core-Shell Structure[J]. CIESC Journal, 2008, 16(4): 626 -630 .
[2] 范志伟, 周兴贵, 罗灵爱, 袁渭康. Numerical Investigation of Constructal Distributors with Different Configurations[J]. CIESC Journal, 2009, 17(1): 175 -178 .
[3] 张英,秦炜,戴猷元. 三辛胺萃取分离乳酸-醋酸 [J]. CIESC Journal, 2001, 52(2): 141 -145 .
[4] 孙华, 马洪芳, 刘科高, 刘义. 前处理工艺对铝基Ni-P化学镀层性能的影响 [J]. 化工学报, 2010, 61(12): 3200 -3204 .
[5] 谭连城. 含有热力偏导数的流体热力性质的计算——Lee-Kesler方程的导数压缩性系数及其应用 [J]. CIESC Journal, 1981, 32(4): 320 -333 .
[6] 余耀华,方景礼. 镀银层表面变色机理的电子能谱研究——(Ⅰ)镀银层的表面元素组成和化学态 [J]. CIESC Journal, 1985, 36(1): 20 -28 .
[7] 李生娟, 王树林, 徐波, 高慧峰. 氧化铋掺杂纳米二氧化锰/活性炭复合电极 [J]. 化工学报, 2008, 59(2): 514 -519 .
[8] 巢守柏,范正. 振动筛板槽中液滴分散动力学的研究(Ⅰ)实验研究及理论分析 [J]. CIESC Journal, 1988, 39(6): 643 -650 .
[9] 郭建峰, 高保娇, 王蕊欣. 接枝微粒材料PMAA/SiO2对碱性氨基酸(精氨酸)的吸附性能 [J]. 化工学报, 2010, 61(6): 1469 -1474 .
[10] 王宇红, 袁联群, 俞磊, 项婷婷. 镧、钒取代MCM-41分子筛的结构表征及其在苯酚羟基化反应中的催化性能 [J]. 化工学报, 2010, 61(10): 2565 -2572 .