化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1278-1287.doi: 10.11949/0438-1157.20190934

• 过程系统工程 • 上一篇    下一篇

基于局部线性嵌入的测地线流式核多工况软测量建模方法

杜宇浩,阎高伟(),李荣,王芳   

  1. 太原理工大学电气与动力工程学院,山西 太原 030024
  • 收稿日期:2019-08-14 修回日期:2019-11-03 出版日期:2020-03-05 发布日期:2019-11-28
  • 通讯作者: 阎高伟 E-mail:yangaowei@tyut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61973226);山西省科技重大专项(20181102017);山西省重点研发计划项目(201903)

Multiple working conditions soft sensor modeling method of geodesic flow kernel based on locally linear embedding

Yuhao DU,Gaowei YAN(),Rong LI,Fang WANG   

  1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2019-08-14 Revised:2019-11-03 Online:2020-03-05 Published:2019-11-28
  • Contact: Gaowei YAN E-mail:yangaowei@tyut.edu.cn

摘要:

针对复杂工业过程在多工况条件下缺乏标记样本无法进行软测量建模,而原有模型失准问题,研究了一种局部线性嵌入(locally linear embedding, LLE)和测地线流式核(geodesic flow kernel, GFK)相结合的无监督软测量建模方法。该方法首先通过局部线性嵌入提取各个工况间的公共模式信息,然后将已知工况数据和未知工况数据的公共模式信息投影到流形空间,利用测地线流式核框架在流形空间上实现域迁移,以减小不同工况间数据的分布差异。最后用偏最小二乘回归法建立软测量模型,得到主导变量的软测量值。通过对TE过程中不同工况下的成分变量软测量和不同工况下的球磨机负荷参数软测量结果,验证了所提算法的实用性和有效性。

关键词: 迁移学习, 测地线流式核, 软测量, 算法, 预测, 过程控制

Abstract:

For the complex industrial process, the lack of labeled samples under multiple working conditions cannot be used for soft sensor modeling, and the original model is out of alignment. In this paper, an unsupervised soft sensor modeling method combining locally linear embedding (LLE) and geodesic flow kernel (GFK) is studied. The method firstly extracts the common feature between each working condition by locally linear embedding, and then projects the common feature of the known working condition data and the unknown working condition data into the manifold space, and uses the geodesic flow kernel frame on the manifold space for domain transfer. Finally, the soft-measurement model is established by partial least squares regression method, and the soft-measurement value of the dominant variable is obtained. The practicality and effectiveness of the proposed algorithm are verified by soft sensor of component variables under different working conditions in TE process and soft sensor results of ball mill load parameters under different working conditions.

Key words: transfer learning, geodesic flow kernel, soft sensor, algorithm, prediction, process control

中图分类号: 

  • TP 29

图1

LLE算法示意图"

图2

LLEGFK算法示意图"

表 1

三种工况数据"

工况G/H比率产品等级/(kg/h)
150/5014076
210/9014077
390/1011111

表 2

各工况下不同算法参数软测量均方根误差对比"

Item成分A成分B成分C
PLSRLLEGFKLLEGFKPLSRLLEGFKLLEGFKPLSRLLEGFKLLEGFK
1—21.7390.9890.8900.4601.1921.0890.9560.7190.6200.5430.5370.425
1—32.6352.2011.4640.8395.2194.8644.7934.1790.9010.8590.7440.476
2—11.6701.5770.8080.4371.8511.6181.1350.6250.7110.6460.5990.510
2—32.1511.9201.5970.9834.8454.2514.5703.9630.9370.8750.7760.613
3—11.6291.3970.3560.3284.6824.4724.3144.0950.7460.7250.6950.501
3—21.4841.0570.7040.6553.8734.9023.9243.7830.6610.6210.6350.550

图3

工况1迁移到工况2对成分A含量软测量结果"

图4

工况1迁移到工况3对成分A含量软测量结果"

图5

工况2迁移到工况1对成分A含量软测量结果"

图6

工况2迁移到工况3对成分A含量软测量结果"

图7

不同工况提取公共模式信息前后分布"

表3

各工况参数与实验次数"

工况12345
介质充填率0.30.350.40.450.5
实验次数1391038895102

表 4

各算法软测量均方根误差对比"

ItemMBVRPDCVR
PLSRLLEGFKLLEGFKPLSRLLEGFKLLEGFKPLSRLLEGFKLLEGFK
1—20.5340.2080.3020.0740.0560.1300.0620.0160.0870.1320.1310.102
1—30.7460.4060.3560.1330.1960.1750.0560.0410.2960.2070.1820.134
1—41.8350.4910.3970.1020.5960.2350.0750.0490.3970.1150.3560.109
1—52.1511.9200.5410.2421.3260.1850.1570.0610.8220.4300.7460.296

图8

工况1迁移到工况2料球比软测量结果"

图9

工况1迁移到工况3料球比软测量结果"

图10

工况1迁移到工况4料球比软测量结果"

1 Wang J G,Xie Z,Yao Y,et al.Soft sensor development for improving economic efficiency of the coke dry quenching process[J].Journal of Process Control,2019,77:20-28.
2 曹鹏飞,罗雄麟.化工过程软测量建模方法研究进展[J].化工学报,2013,64(3):788-800.
Cao P F,Luo X L.Modeling of soft sensor for chemical process[J].CIESC Journal,2013,64(3):788-800.
3 刘毅,王海清,李平.用于发酵过程在线建模的自适应局部最小二乘支持向量机回归方法[J].化工学报,2008,59(8):2052-2057.
Liu Y,Wang H Q,Li P.Adaptive local learning based least squares support vector regression with application to online modeling for fermentation processes[J].Journal of Chemical Industry and Engineering(China),2008,59(8):2052-2057.
4 刘毅,王海清,李平.局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用[J].化工学报,2007,58(11):2846-2851.
Liu Y,Wang H Q,Li P.Local least squares support vector regression with application to online modeling for batch processes[J].Journal of Chemical Industry and Engineering(China),2007,58(11):2846-2851.
5 Zheng W,Liu Y,Gao Z,et al.Just-in-time semi-supervised soft sensor for quality prediction in industrial rubber mixers[J].Chemometrics and Intelligent Laboratory Systems,2018,180:36-41.
6 Jin H,Chen X,Li W,et al.Adaptive soft sensor development based on online ensemble gaussian process regression for nonlinear time-varying batch processes[J].Industrial & Engineering Chemistry Research,2015,54(30):7320-7345.
7 Jin H,Chen X,Yang J,et al.Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes[J].Chemical Engineering Science,2015,131:282-303.
8 Liu Y,Yang C,Gao Z,et al.Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes[J].Chemometrics and Intelligent Laboratory Systems,2018,174:15-21.
9 Liu J X,Tao L,Chen J H.Quality prediction for multi-grade processes by just-in-time latent variable modeling with integration of common and special features[J].Chemical Engineering Science,2018,191:31-41.
10 杜永贵,李思思,阎高伟,等.基于流形正则化域适应湿式球磨机负荷参数软测量[J].化工学报,2018,69(3):1244-1251.
Du Y G,Li S S,Yan G W,et al.Soft sensor of wet ball mill load parameter based on domain adaptation with manifold regularization[J].CIESC Journal,2018,69(3):1244-1251.
11 Lv X B,Guan Y,Deng B Y.Transfer learning based clinical concept extraction on data from multiple sources[J].Journal of biomedical informatics,2014,52:55-64.
12 Grubinger T,Chasparis G C,Natschläger T.Generalized online transfer learning for climate control in residential buildings[J].Energy and Buildings,2017,139:63-71.
13 Sun S,Shi H,Wu Y.A survey of multi-source domain adaptation[J].Information Fusion,2015,24:84-92.
14 Liu Y,Yang C,Liu K,et al.Domain adaptation transfer learning soft sensor for product quality prediction[J].Chemometrics and Intelligent Laboratory Systems,2019,192:103813.
15 贺敏,汤健,郭旭琦,等.基于流形正则化域适应随机权神经网络的湿式球磨机负荷参数软测量[J].自动化学报,2019,45(2):398-406.
He M,Tang J,Guo X Q,et al.Soft sensor of wet ball mill load parameter based on domain adaptation with manifold regularization[J].Acta Automatica Sinica,2019,45(2):398-406.
16 Li J,Liu W,Zhou Y,et al.Domain adaptation with few labeled source samples by graph regularization[J].Neural Processing Letters,2019.doi:10.1007/s11063-019-10075-z.
doi: 10.1007/s11063-019-10075-z
17 Wang C.A Geometric Framework for Transfer Learning Using Manifold Alignment[D].University of Massachusetts Amherst,2010.
18 Shrivastava A,Shekhar S,Patel V M.Unsupervised domain adaptation using parallel transport on Grassmann manifold[C]//2014 IEEE Winter Conference on Applications of Computer Vision (WACV).Steamboat Springs, CO, USA:IEEE,2014:277-284.
19 王存睿,张庆灵,段晓东,等.基于流形结构的人脸民族特征研究[J].自动化学报,2018,44(1):140-159.
Wang C R,Zhang Q L,Duan X D,et al.Research of face ethnic features from manifold structure[J].Acta Automatica Sinica,2018,44(1):140-159.
20 Gopalan R,Li R,Chellappa R.Domain adaptation for object recognition: an unsupervised approach[C]//International Conference on Computer Vision.Barcelona, Spain:IEEE,2011:999-1006.
21 Gong B,Shi Y,Sha F,et al.Geodesic flow kernel for unsupervised domain adaptation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Providence, RI, USA:IEEE,2012:2066-2073.
22 Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
23 Zhang Y,Wang C.Modeling and monitoring of multimodes process[C]//International Symposium on Neural Networks.Berlin, Germany:Springer,2012:159-168.
24 Samat A,Gamba P,Abuduwaili J,et al.Geodesic flow kernel support vector machine for hyperspectral image classification by unsupervised subspace feature transfer[J].Remote Sensing,2016,8(3):234.
25 Wang J,Feng W,Chen Y,et al.Visual domain adaptation with manifold embedded distribution alignment[C]//2018 ACM Multimedia Conference on Multimedia Conference.Seoul, South Korea:ACM,2018:402-410.
26 Zou W,Xia Y,Li H.Fault diagnosis of Tennessee-Eastman process using orthogonal incremental extreme learning machine based on driving amount[J].IEEE Transactions on Cybernetics,2018,48(12):3403-3410.
27 Hsu C C,Chen L S,Liu C H.A process monitoring scheme based on independent component analysis and adjusted outliers[J].International Journal of Production Research,2010,48(6):1727-1743.
28 Wang X,Ren J,Liu S.Distribution adaptation and manifold alignment for complex processes fault diagnosis[J].Knowledge-Based Systems,2018,156:100-112
29 阎高伟,贺敏,汤健,等.基于最大均值差异多源域迁移学习的湿式球磨机负荷参数软测量[J].控制与决策,2018,33(10):70-75.
Yan G W,He M,Tang J,et al.Soft sensor of wet ball mill load based on maximum mean discrepancy multi-source domain transfer learning[J].Control and Decision,2018,33(10):70-75.
30 汤健.基于频谱数据驱动的旋转机械设备负荷软测量[M].北京:国防工业出版社,2015.
Tang J.Soft Sensing of Rotating Machinery Equipment Load based on Spectrum Data Drive[M].Beijing:National Defense Industry Press,2015.
[1] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[2] 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263.
[3] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[4] 王湘月, 周晓君, 阳春华. 不确定条件下的湿法炼锌除铜过程机会约束优化控制[J]. 化工学报, 2020, 71(3): 1226-1233.
[5] 耿志强, 曾荣甫, 徐圆, 韩永明, 顾祥柏. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087.
[6] 耿志强, 毕帅, 王尊, 朱群雄, 韩永明. 基于改进NSGA-Ⅱ算法的乙烯裂解炉操作优化[J]. 化工学报, 2020, 71(3): 1088-1094.
[7] 何德峰, 张永达, 李廉明, 仇翔. 循环流化床燃烧系统无终端约束字典序经济预测控制[J]. 化工学报, 2020, 71(3): 1210-1216.
[8] 张璐, 张嘉成, 韩红桂, 乔俊飞. 基于模糊神经网络的污水处理生化除磷过程控制[J]. 化工学报, 2020, 71(3): 1217-1225.
[9] 赵文英, 李文文, 孙晓岩, 曹晓荣, 项曙光. 基于PR立方型状态方程普遍化温度函数的研究与评价[J]. 化工学报, 2020, 71(3): 1234-1245.
[10] 李晨莹, 刘琳琳, 张磊, 顾偲雯, 都健. 不确定性下基于多工况优化的可控性换热器网络综合[J]. 化工学报, 2020, 71(3): 1154-1162.
[11] 蔡涛, 杨博, 李宏光. 基于时延挖掘模糊时间认知图的化工过程多变量时序预测方法[J]. 化工学报, 2020, 71(3): 1095-1102.
[12] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[13] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[14] 田洲, 焦栋, 王金强, 刘柏平. 序列分布导向的CGC催化乙烯与1-辛烯共聚过程建模[J]. 化工学报, 2020, 71(2): 651-659.
[15] 邢瑞, 江南, 刘冰, 安亚雄, 汪亚燕, 张东辉. 基于MPC控制技术优化VPSA制氧工艺的模拟[J]. 化工学报, 2020, 71(2): 669-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤桂华,俞庆生. 钒催化剂的氟中毒机理探讨 [J]. CIESC Journal, 1982, 33(3): 239 -246 .
[2] 卢泽湘, 周忠良, 银凤翔, 季生福, 刘辉, 李成岳. Pt-Sn-Li/Al2O3/FeCrAl催化剂的制备、表征和长链烷烃脱氢催化性能
[J]. 化工学报, 2008, 59(1): 70 -76 .
[3] 冯长根. 连续搅拌槽式反应器(CSTR)——定态非绝热操作的热稳定性 [J]. CIESC Journal, 1987, 38(1): 108 -112 .
[4] 毕慧平, 陈守文, 高智琳, 张莎, 王连军. 3,3′-二磺化-4,4′-二氟二苯砜二钠盐的合成与表征 [J]. 化工学报, 2009, 60(11): 2937 -2942 .
[5] 黄鸿鼎,谷俊杰. 垂直管中的液泛 [J]. CIESC Journal, 1989, 40(5): 513 -520 .
[6] . JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING(CHINA)Vol.43 1992 Annual Editorial Index [J]. CIESC Journal, 1992, 43(6): 777 -782 .
[7] 高弘;黄英明;刘铭;张剑;华玉涛;曹竹安 . CAT基因敲除对热带假丝酵母产DCA13代谢网络的影响 [J]. CIESC Journal, 2006, 57(9): 2157 -2161 .
[8] 王为国; 曾真; 毕亚凡; 孙炜. “全回流”间歇精馏塔顶贮槽内液体流动时的混合 [J]. CIESC Journal, 2002, 53(8): 857 -861 .
[9] 陈定三, 杨慧中. 基于局部重构融合流形聚类的多模型软测量建模 [J]. 化工学报, 2011, 62(8): 2281 -2286 .
[10] 杨涛,陈光进,阎炜,郭天民. 普遍化立方型状态方程中Wong-Sandler型混合规则的建立 [J]. CIESC Journal, 1997, 48(3): 382 -388 .