化工学报 ›› 2020, Vol. 71 ›› Issue (2): 594-601.doi: 10.11949/0438-1157.20190933

• 流体力学与传递现象 • 上一篇    下一篇

翅片重力热管传热性能实验研究

马奕新1(),金宇2,张虎1(),王娴1,唐桂华3   

  1. 1.西安交通大学机械结构强度与振动国家重点实验室, 陕西西安 710049
    2.北京空间飞行器总体设计部, 北京 100094
    3.西安交通大学热流科学与工程教育部重点实验室, 陕西西安 710049
  • 收稿日期:2019-08-14 修回日期:2019-11-19 出版日期:2020-02-05 发布日期:2019-12-02
  • 通讯作者: 张虎 E-mail:myx311@stu.xjtu.edu.cn;huzhang@xjtu.edu.cn
  • 作者简介:马奕新(1993—),男,硕士研究生,myx311@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51606143);博新计划项目(20180244);国家博士后基金项目(2018M643641);中央高校基本科研业务费专项资金项目(xjj2018029)

Experimental study on heat transfer performance of finned gravity heat pipe

Yixin MA1(),Yu JIN2,Hu ZHANG1(),Xian WANG1,Guihua TANG3   

  1. 1.State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi an Jiaotong University, Xi an 710049, Shaanxi, China
    2.Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
    3.Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi an Jiaotong University, Xi an 710049, Shaanxi, China
  • Received:2019-08-14 Revised:2019-11-19 Online:2020-02-05 Published:2019-12-02
  • Contact: Hu ZHANG E-mail:myx311@stu.xjtu.edu.cn;huzhang@xjtu.edu.cn

摘要:

热管是一种利用工质相变传热,具有传热温差小、热响应速度快、换热量大等优点的传热元件。为研究翅片重力热管的传热性能,实验测试了翅片重力热管与平板重力热管(铝-丙酮工质)的传热性能,比较了其瞬态热响应速率,获得了翅片与平板重力热管在蒸发段不同电功率稳定加热条件下表面温度沿高度方向的变化规律,计算了平板热管的等效热导率,并与铝板测量结果进行了对比。结果表明:重力热管传热速度快、表面均温效果好,热导率随功率的增大先升高后降低,整体上热导率高达纯铝的84~258倍,翅片热管相比于平板热管具有更好的均温性和散热效果,在建筑供暖、车载电池散热、余热利用等领域具有广泛的应用前景。

关键词: 翅片重力热管, 相变, 传热, 均温性, 热导率

Abstract:

The heat pipe is a kind of heat transfer element that utilizes phase change heat transfer of working medium, with the advantages of small heat transfer temperature difference, fast thermal response speed, large heat exchange capacity and so on. In order to study the heat transfer performance of finned gravity heat pipe, the heat transfer characteristics of finned heat pipe and flat heat pipe (combination of aluminum-acetone) are investigated experimentally. The dynamic temperature responses of finned heat pipe and flat heat pipe are obtained and compared. The steady state temperature distributions along the length direction of finned heat pipe and flat heat pipe are measured under different heating power. Then the effective thermal conductivity of flat heat pipe is calculated with the temperature difference across the uniform temperature section. Comparison is made to the test results of aluminum. The results show that the gravity heat pipe has faster thermal response and better temperature uniformity along the pipe. With the increment of heating power, the effective thermal conductivity of gravity heat pipe increases at first and then decreases which is almost 84—258 times of aluminum. Compared with flat gravity heat pipe, the finned heat pipe has higher temperature uniformity and heat dissipation ability. Thus the finned gravity heat pipe has wide application prospect in architecture heating, vehicle battery heat dissipation and waste heat utilization.

Key words: finned gravity heat pipe, phase change, heat transfer, temperature uniformity, thermal conductivity

中图分类号: 

  • TK 172.4

表1

实验件几何参数"

试件名称长×宽×厚/m内腔的长×宽×高/m充液率/%
铝板0.95×0.06×0.004
平板热管0.95×0.06×0.003140.90×0.058×0.0011430
翅片热管0.60×0.075×0.003140.55×0.073×0.0011430

图1

测试实验件"

图2

实验测试系统"

图3

不同实验件35 W功率下的瞬态温度响应规律"

图4

平板热管在92℃水浴下加热的瞬态温度响应规律"

图5

不同实验件沿程温度分布"

图6

加热功率10 W时不同实验件的温度分布对比"

图7

平板热管稳态沿程温度分布"

图8

平板热管的等效热导率"

图9

铝板的等效热导率"

1 Volodymyr B, Stanislav Z, Jaroslav V, et al. Elaboration of thermal control systems on heat pipes for microsatellites magion 4, 5 and BIRD[J]. Applied Thermal Engineering, 2003, 23(9): 1109-1117.
2 Theodore D S, Gajanana C B. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering, 2003, 23(9): 1055-1065.
3 Roger R R, Thiago D. Development of an experimental loop heat pipe for application in future space missions[J]. Applied Thermal Engineering, 2005, 25(1): 101-112.
4 Kim T Y, Hyun B S, Lee J J, et al. Numerical study of the spacecraft thermal control hardware combining solid-liquid phase change material and a heat pipe[J]. Aerospace Science & Technology, 2013, 27(1): 10-16.
5 Wang X F, Sun Z J, Wu C Z, et al. Experimental study on thermosyphon heat sink for cooling of electronic apparatus[J]. Journal of Electron Devices, 2004, 27(3): 393-396.
6 Chen B B, Liu W, Liu Z C, et al. Experimental investigation of loop heat pipe with flat evaporator using biporous wick[J]. Applied Thermal Engineering, 2012, 42(42): 34-40.
7 Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404.
8 Zhang H, Zhuang J. Research, development and industrial application of heat pipe technology in China[J]. Applied Thermal Engineering, 2003, 23(9): 1067-1083.
9 Abd El-Baky M A, Mohamed M M. Heat pipe heat exchanger for heat recovery in air conditioning[J]. Applied Thermal Engineering, 2007, 27(4): 795-801.
10 王锐, 董重成, 吴辉敏. 热管用于建筑供暖的初步研究[J]. 低温建筑技术, 2014, 36(2):35-37.
Wang R, Dong C C, Wu H M. Preliminary research on heat pipe used in building heating[J]. Low Temperature Architecture Technology, 2007, 27(4): 795-801.
11 Grover G M, Cotter T P, Erickson G F. Structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(6): 1990-1991.
12 Cotter T P. Theory of heat pipes[J]. Theory of Heat Pipes, 1965, 25(5): 1366-1373.
13 孙志坚, 何国安, 王立新, 等. 两种电子器件用重力型热管散热器的换热特性[J]. 化工学报, 2006, 57(10): 2283-2288.
Sun Z J, He G A, Wang L X, et al. Heat transfer characteristics of two different thermosiphon radiators for electronic device[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2283-2288.
14 王伟, 夏国栋, 马丹丹, 等. 重力径向偏心热管的温度特性[J]. 化工学报, 2016, 67(9): 3651-3657.
Wang W, Xia G D, Ma D D, et al. Temperature characteristics of radial eccentric gravity heat pipe[J]. CIESC Journal, 2016, 67(9): 3651-3657.
15 何曙, 夏再忠, 王如竹. 一种新型重力热管传热性能研究[J]. 工程热物理学报, 2009, 30(5):834-836.
He S, Xia Z Z, Wang R Z. Heat transfer characteristics of an innovative gravity heat pipe[J]. Journal of Engineering Thermophysics, 2009, 30(5): 834-836.
16 Shiraishi M, Kikuchi K, Yamanishi T. Investigation of heat transfer characteristics of a two-phase closed thermosyphon[J]. Journal of Heat Recovery Systems, 1981, 1(4): 287-297.
17 Jiao B, Qiu L M, Zhang X B, et al. Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2008, 28(11): 1417-1426.
18 Noie S H. Heat transfer characteristics of a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2005, 25(4): 495-506.
19 Noie S H, Emami M R S, Khoshnoodi M. Effect of inclination angle and filling ratio on thermal performance of a two-phase closed thermosyphon under normal operating conditions[J]. Heat Transfer Engineering, 2007, 28(4): 365-371.
20 闫小克, 唐志伟, 俞昌铭. 热管传热性能的评价方法及其测试装置[J]. 计量学报, 2003, 24(2):113-115.
Yan X K, Tang Z W, Yu C M. A method for evaluating the heat transfer performance of heat pipe and its measuring apparatus[J]. Acta Metrological Sinica, 2003, 24(2): 113-115.
21 Tsai T E, Wu G W, Chang C C, et al. Dynamic test method for determining the thermal performances of heat pipes[J]. International Journal of Heat & Mass Transfer, 2010, 53(21): 4567-4578.
22 战洪仁, 李春晓, 王立鹏,等. 基于VOF模型对重力热管内部沸腾冷凝过程的仿真模拟[J]. 冶金能源, 2016, 35(1):30-34.
Zhan H R, Li C X, Wang L P, et al. Simulation of the thermosiphon s ebullition and condensation based on VOF model[J]. Energy for Metallurgical Industry, 2016, 35(1): 30-34.
23 战洪仁, 吴众, 惠尧, 等. 基于VOF模型的倾角对重力热管性能影响数值研究[J]. 热力发电, 2017,46(6):40-45.
Zhan H R, Wu Z, Hui Y, et al. Influence of dip angle on performance of gravitational heat pipe: numerical simulation based on VOF model[J]. Thermal Power Generation, 2017, 46(6): 40-45.
24 战洪仁, 张海松, 李春晓, 等. 重力热管流动与传热特性的数值研究[J]. 动力工程学报, 2017, 37(7):540-545.
Zhan H R, Zhang H S, Li C X, et al. Simulation study on flow and heat-transfer characteristics of gravity heat pipes[J]. Journal of Chinese Society of Power Engineering, 2017, 37(7): 540-545.
25 王鑫煜, 辛公明, 田富中, 等. 小管径重力热管启动特性[J]. 化工学报, 2012, 63: 94-98.
Wang X Y, Xin G M, Tian F Z, et a1. Start-up behavior of gravity heat pipe with small diameter[J]. CIESC Journal,2012, 63: 94-98.
26 辛公明, 秦秋杨, 张鲁生, 等. 小角度下自湿润流体重力热管传热特性[J]. 工程热物理学报, 2015,36(6):1282-1285.
Xin G M, Qin Q Y, Zhang L S, et al. Thermal characteristics of gravity heat pipes with self-rewetting fluid at small inclination angles[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1282-1285.
27 张劲草, 辛公明, 陈岩, 等. 蒸发段和冷凝段变化对重力热管性能的影响[J]. 化工学报, 2017, 68(4):1343-1348.
Zhang J C, Xin G M, Chen Y, et al. Influence of changing evaporator/condenser section on operation characteristics of gravity heat pipe[J]. CIESC Journal, 2017, 68(4): 1343-1348.
28 韩振兴, 王冬骁, 王飞, 等. 重力热管冷凝段运行特征的可视化实验研究[J]. 化工学报, 2014, 65 (8):2934-2939.
Han Z X, Wang D X, Wang F, et al. Visual experimental study on operation characteristics of condensation segment of gravity-assisted heat pipe[J]. CIESC Journal, 2014, 65(8): 2934-2939.
29 唐志伟, 连晨舟, 蒋章焰, 等. 重力热管弹状流工况的简化分析[J]. 工程热物理学报, 2002, 23(3):345-347.
Tang Z W, Lian C Z, Jiang Z Y, et al. The analyses on the performance of the slug flow in gravity heat pipes[J]. Journal of Engineering Thermophysics, 2002, 23(3):345-347.
30 陈彦泽, 周一卉, 丁信伟. 重力热管传热波动特性研究及抑制方法探讨[J]. 热能动力工程, 2003, 18(4):334-337.
Chen Y Z, Zhou Y H, Ding X W. An investigation of the heat-transfer fluctuation characteristics in gravity heat pipes and an exploration of methods for their restraint[J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(4): 334-337.
31 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006:555.
Yang S M, Tao W Q. Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006:555.
[1] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[2] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[3] 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870.
[4] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[5] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[6] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[7] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[8] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[9] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[10] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[11] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[12] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[13] 侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[14] 谈周妥,郭志罡,杨剑,王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100.
[15] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王东民, 董丽宁, 全晓军. 改性SiO2纳米颗粒沸腾沉积层的形成原理及其沸腾换热[J]. 化工学报, 2018, 69(10): 4200 -4205 .
[2] 王帅, 王栋, 董宝光, 李瑞华. 基于管内相分隔的径向压差在多相流测量的应用[J]. 化工学报, 2018, 69(12): 5049 -5055 .
[3] 李登稳, 程振民. 文丘里型气液分布器的实验与数值研究[J]. 化工学报, 2018, 69(11): 4625 -4632 .
[4] 沈秋颖, Tahir Muhammad Faran, Cumbula Armando José, 付涛涛, 姜韶堃, 朱春英, 马友光. 对称分支并行微通道中气液两相流的均匀性规律[J]. 化工学报, 2018, 69(11): 4640 -4647 .
[5] 翁润滢, 孙斌, 赵玉晓, 张竟月, 文英杰. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065 -5072 .
[6] 闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913 -1922 .
[7] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702 -1712 .
[8] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761 -1771 .
[9] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772 -1778 .
[10] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858 -1867 .