化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4519-4527.doi: 10.11949/0438-1157.20190928

• 综述与专论 • 上一篇    下一篇

木质素氢解反应溶剂与催化剂研究进展

王文锦1,2,3(),徐莹1,2(),王东玲1,2,3,王晨光1,2,马隆龙1,2   

  1. 1. 中国科学院可再生能源重点实验室, 中国科学院广州能源研究所,广东 广州 510640
    2. 广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
    3. 中国科学院大学,北京 100871
  • 收稿日期:2019-08-13 修回日期:2019-09-26 出版日期:2019-12-05 发布日期:2019-12-16
  • 通讯作者: 徐莹 E-mail:1148818926@qq.com;xuying@ms.giec.ac.cn
  • 作者简介:王文锦(1995—),男,硕士研究生,1148818926@qq.com
  • 基金资助:
    国家自然科学基金项目(51676191);国家自然科学基金委员会与泰国国家研究理事会“可再生能源”领域合作研究项目(5181101221);中国科学院战略性先导科技专项(A)(XDA 21060102);广东省特支计划项目-科技创新青年拔尖人才项目(2015TQ01N652);中国科学院青年促进会项目(2016313)

Progress in solvent and catalyst for hydrogenolysis of lignin

Wenjin WANG1,2,3(),Ying XU1,2(),Dongling WANG1,2,3,Chenguang WANG1,2,Longlong MA1,2   

  1. 1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou 510640, Guangdong, China
    2. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
    3. University of Chinese Academy of Sciences, Beijing 100871, China
  • Received:2019-08-13 Revised:2019-09-26 Online:2019-12-05 Published:2019-12-16
  • Contact: Ying XU E-mail:1148818926@qq.com;xuying@ms.giec.ac.cn

摘要:

木质素是由三种苯丙烷单元随机键合形成的复杂大分子物质,是自然界中唯一可直接提供芳环的可再生能源。以木质素为原料制取高品位液体燃料和高附加值化学品,特别是木质素氢解是国内外关注的热门研究领域之一。梳理了近年木质素催化氢解研究进展,针对木质素氢解过程中溶剂体系(水溶剂以及醇类溶剂)和催化剂体系(均相催化剂以及非均相金属催化剂)对木质素氢解效率、产物分布的影响机理,做了较全面的概述和分析。最后,针对木质素催化氢解领域目前尚存在的问题提出建议,期望为木质素高值化利用相关研究提供参考。

关键词: 木质素, 氢解, 反应溶剂, 催化剂, 酚, 转化率

Abstract:

Lignin is a complex macromolecule formed by three types of phenylpropane units. It is the only renewable energy source in nature that can directly provide aromatic rings. The use of lignin as a raw material for the preparation of high-grade liquid fuels and high value-added chemicals, especially lignin hydrogenolysis is one of the hot research areas at home and abroad. Hydrogenolysis is one of the most promising methods for the depolymerization of lignin. This paper comprehensively summarizes influence of the solvent systems (aqueous and alcohol) and catalyst systems (homogeneous and heterogeneous catalysts) commonly used in hydrogenolysis during recent years. Finally, several suggestions to relative research in the future are proposed.

Key words: lignin, hydrogenolysis, solvents, catalyst, phenol, conversion

中图分类号: 

  • TK 6

图1

木质素基本结构单元"

表1

木质素氢解反应溶剂"

SolventCatalystReaction conditionsReactantProductConversion/%Selectivity/%
basic waterNiAl alloy220℃,Arpoplar wood ligninmonomer+oligomer86.818.9
basic waterNi/ZSM-5200℃,4 MPaOKLbio-oil83
waterPd1Ni4/MIL-100(Fe)180℃,6 horganosolv ligninphenol and guaiacol derivates100
methanolRaney Ni300℃,8 horganosolv ligninunsaturates86
methanolPd/C+CrCl3300℃,4 hhydrolysis ligninmonomer81.426.3
ethanolRu/C300℃,10 hligninoil75.8
ethanolNi/Al-SBA-15300℃,4 hhydrolysis ligninphenolic monomers>9021.9
2-propanolRaney Ni300℃,8 horganosolv ligninsaturates91
isopropanolNi-Cu/H-Beta330℃,3 hligninmonomer98.850.83
isopropanolPt Re/TiO2240℃,Heligninmonomer phenol18.7
ethanol/1,4-dioxaneformic300℃,2 hkraft ligninmonomer phenol22.4
SC-ethanol/phenolCu Ni Al290℃,3 halkali ligninbio-oil81.8

表2

木质素氢解非均相催化剂"

CatalystReaction conditionReactantProductConversion/%Selectivity/%
Pd/C+CrCl3280℃,5 halkali ligninmonophenols28.5
Ni/Al-SBA-15300℃,4 hhydrolysis ligninmonophenol>9021.9
Co-phen/C200℃,2 hbirch ligninmonophenol34
Ni7Au3170℃,12 horganoslov ligninaromatic monomers14
Pd Ni/ZrO280℃,6 hmodel compoundsaromatic monomers>80
Pt Re/TiO2240℃,12 hbirch ligninmonophenol18.71
Ni Fe/AC225℃,2 MPa H2organosolv ligninmonophenol23.2
Au1Pd1/CeO2180℃,6 horganosolv ligninmonophenol44.1
1 George W, Huber S I. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chem. Rev., 2006, 106: 4044-4098.
2 Achyuthan K E, Achyuthan A M, Adams P D, et al. Supramolecular self-assembled chaos: polyphenolic lignin s barrier to cost-effective lignocellulosic biofuels[J]. Molecules, 2010, 15(12): 8641-8688.
3 龙金星, 徐莹, 王铁军, 等. 木质素催化解聚与氢解[J]. 新能源进展, 2014, 2(2): 83-88.
Long J X, Xu Y, Wang T J, et al. Catalytic depolymerization and hydrogenolysis of lignin[J]. Advances in New and Renewable Energy, 2014,2(2): 83-88.
4 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858.
Lu Y, Wei X Y, Zong Z M, et al. Structural investigation and application of lignins[J]. Progress in Chemistry, 2013,25(5): 838-858.
5 Li C, Zhao X, Wang A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem. Rev., 2015, 115(21): 11559-11624.
6 Yue F X, Lu F C, Sun R C, et al. Synthesis and characterization of new 5-linked pinoresinol lignin models[J]. Chemistry-A European Journal, 2012, 18(51): 16402-16410.
7 Manara P, Zabaniotou A, Vanderghem C, et al. Lignin extraction from Mediterranean agro-wastes: impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior[J]. Catalysis Today, 2014, 223: 25-34.
8 Klein A P, Beach E S, Emerson J W, et al. Accelerated solvent extraction of lignin from Aleurites moluccana (Candlenut) nutshells[J]. Journal of Agricultural and Food Chemistry, 2010, 58(18): 10045-10048.
9 Hu L, Pan H, Zhou Y, et al. Methods to improve lignin s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review[J]. Bioresources, 2011, 6(3): 3515-3525.
10 Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews, 2010, 110(6): 3552-3599.
11 隋鑫金. 工业木质素催化液化制备酚类化学品的研究[D]. 广州: 华南理工大学, 2011.
Sui X J. Study on the catalytic liquefaction of industrial kraft lignin for the production of phenols[D]. Guangzhou: South China University of Technology, 2011.
12 赵媛媛. 木质素在不同水热环境中的解聚特性及产物形成规律研究[D]. 广州:华南理工大学, 2017.
Zhao Y Y. Study on depolymerization characteristics and product formation of lignin in different hydrothermal conditions[D]. Guangzhou: South China University of Technology,2017.
13 Pandey M P, Kim C S. Lignin depolymerization and conversion: a review of thermochemical methods[J]. Chemical Engineering & Technology, 2011, 34(1): 29-41.
14 Gasser C A, Hommes G, Schaeffer A, et al. Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin[J]. Applied Microbiology and Biotechnology, 2012, 95(5): 1115-1134.
15 Chatel G, Rogers R D. Review: oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(3): 322-339.
16 Behling R, Valange S, Chatel G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends?[J]. Green Chemistry, 2016, 18(7): 1839-1854.
17 Kang S, Li X, Fan J, et al. Hydrothermal conversion of lignin: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 546-558.
18 Shen D, Jin W, Hu J, et al. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 761-774.
19 Carpenter D, Westover T L, Czernik S, et al. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors[J]. Green Chemistry, 2014, 16(2): 384-406.
20 Li S H, Liu S, Colmenares J C, et al. A sustainable approach for lignin valorization by heterogeneous photocatalysis[J]. Green Chemistry, 2016, 18(3): 594-607.
21 Xu C P, Arancon R A D, Labidi J, et al. Lignin depolymerisation strategies: towards valuable chemicals and fuels[J]. Chemical Society Reviews, 2014, 43(22): 7485-7500.
22 Deuss P J, Barta K, De Vries J G. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals[J]. Catalysis Science & Technology, 2014, 4(5): 1174-1196.
23 Espro C, Gumina B, Paone E, et al. Upgrading lignocellulosic biomasses: hydrogenolysis of platform derived molecules promoted by heterogeneous Pd-Fe catalysts[J]. Catalysts, 2017, 7(3):78.
24 Crestini C, Dauria M. Singlet oxygen in the photodegradation of lignin models[J]. Tetrahedron, 1997, 53(23): 7877-7888.
25 张颖, 翟勇祥. 木质素的催化加氢转化[J]. 化工学报, 2017, 68(3): 821-830.
Zhang Y, Zhai Y X. Catalytic hydroprocessing of lignin[J]. CIESC Journal, 2017, 68(3): 821-830.
26 Gillet S, Aguedo M, Petitjean L, et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry[J]. Green Chemistry, 2017, 19(18): 4200-4233.
27 Duval A, Lawoko M. A review on lignin-based polymeric, micro- and nano-structured materials[J]. Reactive and Functional Polymers, 2014, 85: 78-96.
28 Zakzeski J. The catalytic valorization of lignin for the production of renewable chemicals[J]. ACS Sustainable Chemistry & Engineering,2010, 110: 3552-3599.
29 Fu C X, Mielenz J R, Xiao X R, et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3803-3808.
30 Chen F, Dixon R A. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nature Biotechnology, 2007, 25: 759.
31 Luo H, Abu-Omar M M. Lignin extraction and catalytic upgrading from genetically modified poplar[J]. Green Chemistry, 2018, 20(3): 745-753.
32 Wang X, Rinaldi R. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin[J]. ChemSusChem, 2012, 5(8): 1455-1466.
33 Konnerth H, Zhang J, Ma D, et al. Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water[J]. Chemical Engineering Science, 2015, 123: 155-163.
34 Wang D, Wang Y Y, Li X Y, et al. Lignin valorization: a novel in situ catalytic hydrogenolysis method in alkaline aqueous solution[J]. Energy & Fuels, 2018, 32(7): 7643-7651.
35 Qi S C, Hayashi J I, Kudo S, et al. Catalytic hydrogenolysis of kraft lignin to monomers at high yield in alkaline water[J]. Green Chemistry, 2017, 19(11): 2636-2645.
36 Zhang J W, Lu G P, Cai C. Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd–Ni BMNPs[J]. Green Chemistry, 2017, 19(19): 4538-4543.
37 Li C, Zheng M, Wang A, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy Environ. Sci., 2012, 5(4): 6383-6390.
38 Nimmanwudipong T, Runnebaum R C, Block D E, et al. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: reaction network including hydrodeoxygenation reactions[J]. Energy & Fuels, 2011, 25(8): 3417-3427.
39 Shu R, Zhang Q, Ma L, et al. Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin[J]. Bioresour. Technol., 2016, 221: 568-575.
40 Huang X, Koranyi T I, Boot M D, et al. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics[J]. Green Chemistry, 2015, 17(11): 4941-4950.
41 Ma R, Hao W, Ma X, et al. Catalytic ethanolysis of kraft lignin into high-value small-molecular chemicals over a nanostructured alpha-molybdenum carbide catalyst[J]. Angewandte Chemie-International Edition, 2014, 53(28): 7310-7315.
42 Oregui-Bengoechea M, Gandarias I, Arias P L, et al. Solvent and catalyst effect in the formic acid aided lignin-to-liquids[J]. Bioresour. Technol., 2018, 270: 529-536.
43 Chen P, Zhang Q, Shu R, et al. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts[J]. Bioresource Technology, 2017, 226: 125-131.
44 Kong L, Liu C, Gao J, et al. Efficient and controllable alcoholysis of kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst[J]. Bioresour. Technol., 2019, 276: 310-317.
45 Hu J, Zhang S, Xiao R, et al. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source[J]. Bioresour. Technol., 2019, 279: 228-233.
46 Shu R, Long J, Yuan Z, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C[J]. Bioresour. Technol., 2015, 179: 84-90.
47 Cheng C, Shen D, Gu S, et al. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals[J]. Catalysis Science & Technology, 2018, 8(24): 6275-6296.
48 Marcus Y. The properties of organic liquids that are relevant to their use as solvating solvents[J]. Chemical Society Reviews, 1993, 22(6): 409-416.
49 Toledano A, Serrano L, Labidi J, et al. Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents[J]. ChemCatChem, 2013, 5(4): 977-985.
50 Oregui-Bengoechea M, Gandarias I, Arias P L, et al. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: a holistic approach[J]. ChemSusChem, 2017, 10(4): 754-766.
51 Wu Z, Zhao X, Zhang J, et al. Ethanol/1,4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers[J]. Bioresour. Technol., 2019, 278: 187-194.
52 Saisu M, Sato T, Watanabe M, et al. Conversion of lignin with supercritical water-phenol mixtures[J]. Energy & Fuels, 2003, 17: 922-928.
53 Zhou M, Sharma B K, Liu P, et al. Catalytic in situ hydrogenolysis of lignin in supercritical ethanol: effect of phenol, catalysts, and reaction temperature[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6867-6875.
54 Cheng S, cruz I D, Wang M, et al. Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents[J]. Energy & Fuels, 2010, 24(9): 4659-4667.
55 Barrett J A, Gao Y, Bernt C M, et al. Enhancing aromatic production from reductive lignin disassembly: in situo-methylation of phenolic intermediates[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6877-6886.
56 Gosselink R J, Teunissen W, Van Dam J E, et al. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals[J]. Bioresour. Technol., 2012, 106: 173-177.
57 Huang X, Ouyang X, Hendriks B M S, et al. Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts[J]. Faraday Discussions, 2017, 202: 141-156.
58 Zhang X, Zhang Q, Long J, et al. Phenolics production through catalytic depolymerization of alkali lignin with metal chlorides[J]. Bioresources, 2014, 9(2): 3347-3360.
59 Hidajat M J, Riaz A, Park J, et al. Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids[J]. Chemical Engineering Journal, 2017, 317: 9-19.
60 Sergeev A G, Webb J D, Hartwig J F. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation[J]. J. Am. Chem. Soc., 2012, 134(50): 20226-20229.
61 Sergeev A G, Hartwig J F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Science, 2011, 332: 439-443.
62 Van Den Bosch S, Schutyser W, Vanholme R, et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy & Environmental Science, 2015, 8(6): 1748-1763.
63 Xu W, Miller S J, Agrawal P K, et al. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid[J]. ChemSusChem, 2012, 5(4): 667-675.
64 Barta K, Warner G R, Beach E S, et al. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides[J]. Green Chemistry, 2014, 16(1): 191-196.
65 Warner G, Hansen T S, Riisager A, et al. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol[J]. Bioresource Technology, 2014, 161: 78-83.
66 Yang Z, Wei X Y, Zhang M, et al. Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A[J]. Fuel Processing Technology, 2018, 177: 345-352.
67 Zhu C, Cao J P, Zhao X Y, et al. Mechanism of Ni-catalyzed selective C—O cleavage of lignin model compound benzyl phenyl ether under mild conditions[J]. Journal of the Energy Institute, 2019, 92(1): 74-81.
68 Yadagiri J, Koppadi K S, Enumula S S, et al. Ni/KIT-6 catalysts for hydrogenolysis of lignin-derived diphenyl ether[J]. Journal of Chemical Sciences, 2018, 130(8): 106-112.
69 Macala G S, Matson T D, Johnson C L, et al. Hydrogen transfer from supercritical methanol over a solid base catalyst: a model for lignin depolymerization[J]. ChemSusChem, 2009, 2(3): 215-217.
70 Barta K, Matson T D, Fettig M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J]. Green Chemistry, 2010, 12: 1640-1647.
71 Barta K, Ford P C. Catalytic conversion of nonfood woody biomass solids to organic liquids[J]. Acc. Chem. Res., 2014, 47(5): 1503-1512.
72 Rautiainen S, Di Francesco D, Katea S N, et al. Lignin valorization by cobalt-catalyzed fractionation of lignocellulose to yield monophenolic compounds[J]. ChemSusChem, 2019, 12(2): 404-408.
73 Zhang J, Asakura H, Van Rijn J, et al. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals[J]. Green Chemistry, 2014, 16(5): 2432-2437.
74 Zhang J W, Cai Y, Lu G P, et al. Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd-Ni bimetallic nanoparticles supported on ZrO2[J]. Green Chemistry, 2016, 18(23): 6229-6235.
75 Zhai Y, Li C, Xu G, et al. Depolymerization of lignin via a non-precious Ni–Fe alloy catalyst supported on activated carbon[J]. Green Chemistry, 2017, 19(8): 1895-1903.
76 Mavrikakis M, Hammer B, Norskov J K. Effect of strain on the reactivity of metal surfaces[J]. Physical Review Letters, 1998, 81(13): 2819-2822.
77 Gao X, Zhu S, Li Y. Selective hydrogenolysis of lignin and model compounds to monophenols over AuPd/CeO2[J]. Molecular Catalysis, 2019, 462: 69-76.
[1] 白佳杰, 梁丽彤, 张忠林, 李鹏, 杨景轩, 郝晓刚, 黄伟, 官国清. 基于CPD模型的低阶煤催化解聚过程模拟分析[J]. 化工学报, 2019, 70(S2): 265-274.
[2] 孟繁锐, 李伯阳, 李先春, 邱爽. K2CO3对兰炭催化气化特性的影响[J]. 化工学报, 2019, 70(S1): 99-109.
[3] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[4] 张茜, 王艳华. 温控相分离纳米Ir催化αβ-不饱和醛、酮选择加氢[J]. 化工学报, 2019, 70(9): 3396-3403.
[5] 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411.
[6] 翟建荣, 钟梅, 马凤云, 胡浩权. 水蒸气对煤焦油模化物裂解行为及析碳的影响[J]. 化工学报, 2019, 70(8): 2898-2908.
[7] 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863.
[8] 张泽, 程军, 仇亿, 郭浩, 杨卫娟, 刘建忠. 碱处理脱硅介孔分子筛催化脱氧断键制生物航油研究[J]. 化工学报, 2019, 70(8): 2919-2927.
[9] 李萍, 李长明, 段正康, 高士秋, 许光文, 余剑. 低温烟气脱硝催化剂适用条件与动力学[J]. 化工学报, 2019, 70(8): 2981-2990.
[10] 陈潇雪, 宋敏, 孟凡跃, 卫月星. Fe x MnCe1-AC低温SCR催化剂SO2中毒机理研究[J]. 化工学报, 2019, 70(8): 3000-3010.
[11] 赵晨晨, 郝庆兰, 闫宁娜, 杨德宇, 黄亚飞, 豆宝娟. Cu-Ce-Zr基催化剂上甲苯自持燃烧贫燃极限研究[J]. 化工学报, 2019, 70(8): 3050-3057.
[12] 梅振飞, 陈明, 陈德珍, 洪鎏, 胡雨燕. 垃圾热解-挥发分重整过程中基于产物导向的催化剂选择[J]. 化工学报, 2019, 70(8): 3104-3112.
[13] 宋楠, 潘敏建, 陈炳旭, 钱刚, 段学志, 周兴贵. 费托催化剂η-Fe2C (011)上CH4形成及C-C耦合机理研究[J]. 化工学报, 2019, 70(7): 2540-2547.
[14] 洪迪昆, 操政, 杨昌敏, 刘亮, 郭欣. 钙催化苯酚反应的分子动力学模拟[J]. 化工学报, 2019, 70(5): 1788-1794.
[15] 赵汝斌, 蔡猛, 庞煜霞. 碱溶透析和酸析处理对碱木质素物化性质和Pb2+去除性能的影响[J]. 化工学报, 2019, 70(5): 1894-1903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[2] 许虹, 窦文芳, 许泓瑜, 张晓梅, 饶志明, 许正宏. 不同供氧水平对L-精氨酸分批发酵过程的影响 [J]. 化工学报, 2008, 59(9): 2295 -2301 .
[3] 王鹏,陈声培,王洁莹,黄蕊,李明轩,孙世刚. Fe3O4纳米电催化剂的制备、表征及其对H2O2还原过程 [J]. CIESC Journal, 2010, 61(S1): 16 -19 .
[4] 王洁莹,陈声培,王鹏,黄蕊,李明轩,孙世刚. 纳米FePt/GC催化剂的制备及其对乙醇的电氧化性能 [J]. CIESC Journal, 2010, 61(S1): 101 -105 .
[5] . 《化工学报》征稿简则 [J]. CIESC Journal, 1999, 50(1): 144 .
[6] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[7] 郑华均, 马淳安, 黄建国. 碳化钨纳米晶薄膜电极的制备及其对甲醇电氧化性能 [J]. 化工学报, 2005, 56(5): 947 -951 .
[8] 王晓明;汪树军;刘红研;厉建祥;张伟;王文波;张琛 .

利用硫化氢制备氢气和硫化锌新方法

[J]. CIESC Journal, 2006, 57(2): 465 -469 .
[9] 杨宁, 葛蔚, 王维, 李静海. 非均匀气固流态化系统中颗粒流体相间作用的计算 [J]. 化工学报, 2003, 54(4): 538 -542 .
[10] 刘乃汇, 刘辉, 李成岳, 陈标华, 徐春明. 低、高压滴流床中压降和持液量计算的统一关系式 [J]. 化工学报, 2003, 54(4): 543 -548 .