化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 454-460.doi: 10.11949/0438-1157.20190920

• 材料化学工程与纳米技术 • 上一篇    下一篇

负载羧基化球状介孔纳米颗粒TFN膜的研究

孙艳1,2,3(),刘士涛1,邓尚4,余丽芸2,吕东伟3,马军3(),刘献斌4()   

  1. 1.南京大学昆山创新研究院,江苏 昆山 215347
    2.黑龙江八一农垦大学生命科学技术学院,黑龙江 大庆 163319
    3.哈尔滨工业大学环境学院, 城市水资源与环境国家重点实验室,黑龙江 哈尔滨 150090
    4.哈尔滨理工大学化学与环境工程学院, 黑龙江 哈尔滨 150040
  • 收稿日期:2019-08-12 修回日期:2019-09-15 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 马军,刘献斌 E-mail:25180510@qq.com;majun@hit.edu.cn;liuxianbin@hrbust.edu.cn
  • 作者简介:孙艳(1974—),女,副教授,25180510@qq.com
  • 基金资助:
    中国博士后科学基金资助项目(2014M561359);江苏省科技项目(BE2016695)

Research of thin film nanocomposite (TFN) membranes incorporated spherical mesoporous silica nanoparticles with carboxyl group

Yan SUN1,2,3(),Shitao LIU1,Shang DENG4,Liyun YU2,Dongwei LYU3,Jun MA3(),Xianbin LIU4()   

  1. 1.Kunshan Innovation Institute of Nanjing University, Kunshan 215347, Jiangsu, China
    2.College of Life Sciences and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    3.State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
    4.School of Chemistry and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, Heilongjiang, China
  • Received:2019-08-12 Revised:2019-09-15 Online:2020-04-25 Published:2020-05-22
  • Contact: Jun MA,Xianbin LIU E-mail:25180510@qq.com;majun@hit.edu.cn;liuxianbin@hrbust.edu.cn

摘要:

在薄层复合膜(thin-film composite membrane, TFC膜)中引入无机纳米颗粒,形成薄层纳米复合膜(thin-film nanocomposite membrane, TFN膜),近几年作为反渗透膜开始应用于水处理研究。但是无机纳米颗粒在TFC膜中的性能的不稳定性和膜的机械强度等变成了突出问题。合成制备了粒径约为110 nm修饰羧基的介孔氧化硅球状纳米颗粒(MSN—COOH),并将其成功地化学键合在TFC膜的表面功能层交联网络中。与TFC膜相比,键合有MSN—COOH的TFN膜,水通量提高了56.2%,保持高脱盐率;由于单分散介孔纳米颗粒表面亲水官能团的引入,使膜表面的亲水性有很大程度提高,单分散介孔纳米颗粒在基体中的有序排列,使膜表面粗糙度降低,提高了膜的抗污染能力。与普通TFN膜相比较,具有更好的稳定性和柔韧性,可以在长时间高压过滤操作下保持稳定。

关键词: 纳米粒子, 膜, 二氧化硅, TFN, 羧基修饰, 界面聚合

Abstract:

Thin film composite (TFC) membranes incorporated with inorganic nanoparticles to form thin film nanocomposite (TFN) membranes, which had attracted much attention recently. However, the instability of nanoparticles in the TFC membranes and the insufficient mechanical strength of the membranes became the main challenges. Mesoporous silica nanoparticles with an average particle size of ca. 110 nm were modified with carboxyl groups, noted as MSN—COOH and further immobilized on the functional layer of the TFC membranes. The carboxyl groups were successfully incorporated into the mesoporous channels of MSN by characterization techniques, MSN—COOH nanoparticles were successfully bonded to the surface functional layer of the TFC film and formed the crosslinked network. Our experimental results revealed that the TFN membrane hybridized with MSN—COOH demonstrated up to 56.2% improvement in water ?ux, higher salt rejection, and improved mechanical strength compared to the control TFC membranes. Due to the addition of hydrophilic functional groups in monodisperse mesoporous nanoparticles, the hydrophilicity of the membrane surface was increased. Because of the ordered arrangement of monodisperse mesoporous nanoparticles in the matrix, the roughness of the membrane was lowered to a great extent, which was beneficial for enhancing water molecular transfer and fouling resistance of the membranes. Compared with plain TFN membranes, it had better stability and flexibility which kept the stabilization of membranes under high pressure filtration operation.

Key words: nanoparticles, membrane, silica, TFN, modified with carboxyl groups, interfacial polymerization

中图分类号: 

  • TQ 051.893

图1

纳米颗粒的FTIR谱图"

表1

介孔纳米颗粒的结构性质"

样品孔径/nm比表面积/(m2/g)孔容/(cm3/g)
MSN2.848320.87
MSN—NH22.525860.74
MSN—COOH2.534930.75

图2

MSN和MSN—COOH的XRD谱图"

图3

MSN(a)和MSN—COOH(b)的SEM图与TEM图(插图)"

图4

膜的ATR-FTIR谱图"

图5

反渗透膜的SEM图(a),(b) 普通TFC膜;(c),(d) TFN-MSN—COOH-0.1;(e),(f) TFN-MSN—COOH-0.2"

图6

膜的水通量与盐截留率(2.0685 MPa,25°C)"

图7

TFN-MSN—COOH-0.2膜运行100 h的性能参数"

1 Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333: 712-717.
2 Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coing decades[J]. Nature, 2008, 452: 301-310.
3 华怀玉. 现阶段反渗透膜研究进展[J]. 环境与发展, 2018, 30(6): 95-96.
Hua H Y. Research progress on reverse osmosis membrane at present[J]. Environment and Development, 2018, 30(6): 95-96.
4 曹震, 魏杨扬, 赵曼, 等. 反渗透复合膜研究进展与展望[J]. 水处理技术, 2016, 42(9): 10-16+21.
Cao Z, Wei Y Y, Zhao M, et al. Progress and prospect in the development of reverse osmosis composite membrane technology[J]. Technology of Water Treatment, 2016, 42(9): 10-16+21
5 Soltanieh M, Gill W N. Review of reverse osmosis membrane and transport models[J]. Chem. Eng. Commun., 1981, 12: 279-363.
6 Otitoju T A, Saari R A, Ahmad A L. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance[J]. J. Ind. Eng. Chem., 2018, 67: 52-71.
7 Al-Mayyahi A. Important approaches to enhance reverse osmosis (RO) thin film composite (TFC) membranes performance[J]. Membranes, 2018, 8: 68.
8 赵海洋, 张林. 聚酰胺反渗透膜的分子动力学模拟研究进展[J]. 化工进展, 2017, 36(12): 4319-4328.
Zhao H Y, Zhang L. Molecular dynamic simulation of polyamide reverse osmosis membrane[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4319-4328.
9 潘春佑, 徐国荣, 李露, 等. 聚酰胺反渗透复合膜改性技术研究进展[J]. 膜科学与技术, 2016, 36(6): 133-138.
Pan C Y, Xu G R, Li L, et al. Developments and perspectives on the polyamide-based reverse osmosis desalination membranes[J]. Membrane Science and Technology, 2016, 36(6): 133-138.
10 Hermans S, Mariën H, van Goethem C, et al. Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration[J]. Curr. Opin. Chem. Eng., 2015, 8: 45-54.
11 Pendergast M M, Hoek E M V. A review of water treatment membrane nanotechnologies[J]. Energy Environ. Sci., 2011, 4: 1946-1971.
12 许中煌, 雷萍萍, 洪昱斌, 等. 氧化石墨烯/碱式硫酸铝掺杂聚醚砜/聚酰胺复合纳滤膜的制备及其性能[J]. 化工学报, 2018, 69(9): 4066-4074.
Xu Z H, Lei P P, Hong Y B, et al. Preparation and performance of graphene oxide/basic aluminum sulfate doped polyethersulfone/polyamide composite nanofiltration membrane[J]. CIESC Journal, 2018, 69(9): 4066-4074.
13 周丰, 黄慧敏, 钱飞跃, 等. 碳纳米管负载层结构对复合膜分离性能的影响研究[J]. 化工学报, 2018, 69(5): 2318-2326.
Zhou F, Huang H M, Qian F Y, et al. Effects of carbon nanotubes mats structure on rejection performance of composite membranes[J]. CIESC Journal, 2018, 69(5): 2318-2326.
14 陈贤鸿, 傅倍佳, 钟明强, 等. 氧化石墨烯掺杂反渗透混合基质膜制备及性能[J]. 化工学报, 2018, 69(1): 429-434.
Chen X J, Fu B J, Zhong M Q, et al. Preparation and performance of graphene oxide doped reverse osmosis mixed matrix membrane[J]. CIESC Journal, 2018, 69(1): 429-434.
15 Yin J, Kim E S, Yang J, et al. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification[J]. J. Membr. Sci., 2012, 423: 238-246.
16 Zargar M, Hartanto Y, Jin B, et al. Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes[J]. J. Membr. Sci., 2017, 541: 19-28.
17 Lu X, Romero-Vargas C S, Shaffer D, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Energy Environ. Sci., 2012, 47: 12219-12228.
18 Liu X, Sun H, Yang Y. Rapid synthesis of highly ordered Si-MCM-41[J]. J. Colloid Interf. Sci., 2008, 319: 377-380.
19 Deng H, Xu Y, Chen Q, et al. High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes[J]. J. Membr. Sci., 2011, 366: 363-372.
20 Tarboush B J A, Rana D, Matsuura T, et al. Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules[J]. J. Membr. Sci., 2008, 325: 166-175.
21 Jimenez-Solomon M F, Bhole Y, Livingston A G J. High flux membranes for organic solvent nanofiltration (OSN)—interfacial polymerization with solvent activation[J]. J. Membr. Sci., 2012, 423: 371-382.
22 Jadav G L, Singh P S. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties[J]. J. Membr. Sci., 2009, 328: 257-267.
23 Pacheco F A, Pinnau I, Reinhard M, et al. Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques[J]. J. Membr. Sci., 2010, 358: 51-59.
24 Chai G Y, Krantz W B. Formation and characterization of polyamide membranes via interfacial polymerization[J]. J. Membr. Sci., 1994, 93: 175-192.
25 Freger V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization[J]. Langmuir, 2003, 19: 4791-4797.
26 Xie W, Geise G M, Freeman B D, et al. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine[J]. J. Membr. Sci., 2012, 403: 152-161.
27 Hegab M, ElMekawy A, Barclay T G, et al. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity[J]. ACS Appl. Mater. Interfaces, 2015, 7: 18004-18016.
28 Zhou Y, Yu S, Gao C, et al. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance[J]. Sep. Purif. Technol., 2009, 66: 287-294.
29 Castrillón S R V, Lu X, Shaffer D L, et al. Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control[J]. J. Membr. Sci., 2014, 450: 331-339.
30 Kang G, Cao Y. Development of antifouling reverse osmosis membranes for water treatment: a review[J]. Water Res., 2012, 46: 584-600.
31 Liu L, Zhu G R, Liu Z F, et al. Effect of MCM-48 nanoparticles on the performance of thin film nanocomposite membranes for reverse osmosis application[J]. Desalination, 2016, 394: 72-82.
32 Van Goethem C, Verbeke R, Pfanmoller M, et al. The role of MOFs in thin-film nanocomposite (TFN) membranes[J]. J. Membr. Sci., 2018, 563: 938-948.
33 张润楠, 李亚飞, 苏延磊, 等. 氨基化氧化石墨烯界面聚合制备超薄复合纳滤膜[J]. 化工学报, 2018, 69(1): 435-445.
Zhang R N, Li Y F, Su Y L, et al. Preparation of thin-film composite nanofiltration membranes with amino-functionalized graphene oxide by interfacial polymerization[J]. CIESC Journal, 2018, 69(1): 435-445.
[1] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[2] 滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271.
[3] 陆俊杰, 张炜, 谢方民, 焦永峰. 一种自适应柱状密封气膜特性分析[J]. 化工学报, 2020, 71(S1): 346-354.
[4] 李志强, 吕娜, 蒋兰英. 商业正渗透膜的改性及其用于处理焦化废水的研究[J]. 化工学报, 2020, 71(S1): 461-470.
[5] 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.
[6] 武君媛, 霍伟智, 李志强, 曾嘉恒, 江燕斌. 电纺zein-SLS纤维膜的制备及其离子吸附性能研究[J]. 化工学报, 2020, 71(S1): 252-260.
[7] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[8] 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
[9] 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850.
[10] 徐燕青, 李文飞, 吴梦瑶, 沈江南. 用于喷墨印花染料纯化的自组装GO/TiO2复合纳滤膜的制备[J]. 化工学报, 2020, 71(3): 1352-1361.
[11] 李韵浩, 李艾艾, 杨斌斌, 余俊杰, 王开珍, 周勇, 高从堦. 溶胀嵌入脂肪酸分子制备高脱硼反渗透膜[J]. 化工学报, 2020, 71(3): 1343-1351.
[12] 薛爱莲, 周守勇, 蔡健健, 李梅生, 张艳, 赵宜江. 温敏性PVDF/PGS-g-PNIPAM纳米复合超滤膜的制备和性能[J]. 化工学报, 2020, 71(3): 1380-1389.
[13] 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898.
[14] 任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
[15] 吴涵, 陈滢, 刘敏, 王淑莹, 张伟. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766-776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .