化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 272-281.doi: 10.11949/0438-1157.20190915

• 分离工程 • 上一篇    下一篇

复合吸附剂MWCNT/MgCl2的水蒸气吸附性能

赵惠忠1(),雷敏1,黄天厚1,刘涛1,张敏2   

  1. 1.上海海事大学商船学院,上海 201306
    2.上海海洋大学食品学院,上海 201306
  • 收稿日期:2019-08-09 修回日期:2019-09-29 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 赵惠忠 E-mail:hzzhao@shmtu.edu.cn
  • 作者简介:赵惠忠(1968—),男,博士,教授,hzzhao@shmtu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(50976073);上海市教育委员会科研创新重点项目(13ZZ121)

Water vapor adsorption performance of composite adsorbent MWCNT/MgCl2

Huizhong ZHAO1(),Min LEI1,Tianhou HUANG1,Tao LIU1,Min ZHANG2   

  1. 1.Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
    2.College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
  • Received:2019-08-09 Revised:2019-09-29 Online:2020-04-25 Published:2020-05-22
  • Contact: Huizhong ZHAO E-mail:hzzhao@shmtu.edu.cn

摘要:

通过研磨将多壁碳纳米管分别与质量分数为30%、40%和50%的无水氯化镁复合,制备了3种不同配比的复合吸附剂MWCNT/MgCl2。采用数字化扫描电子显微镜(SEM)观察复合吸附剂表面材质的结构样貌,通过Hot Disk热常数分析仪测得复合吸附剂的热导率,使用恒温恒湿箱选取具有代表性的温湿度,测试复合吸附剂在不同工况下的水蒸气吸附性能,并采用准二级动力学模型对25℃、50% RH工况下的实验数据进行拟合,应用Autosorb-IQ全自动气体分析仪测试了三种样品在25℃下的等温吸湿曲线。实验结果表明,相同温湿度工况下,随着氯化镁含量增加,复合吸附剂的吸附量提高,25℃、50% RH下氯化镁含量为30%、40%和50%的复合吸附剂M1、M2和M3的吸附量分别为0.62、0.79和0.94 g/g;恒定湿度为50% RH,温度变化为15~35℃时,复合吸附剂吸附量受温度和饱和水蒸气分压力的双重影响,表现为先增加后减小;温度固定为25℃,相对湿度从50% RH增加到80% RH时,复合吸附剂吸附量均大大提升;复合吸附剂在35℃、25% RH中高温、低湿条件下仍表现出较好的吸附能力;在相对压力P/P0为0.3时,M1、M2和M3的吸附量分别为0.24、0.25和0.30 g/g,随着吸附压力的增加,复合吸附剂的吸附量也不断提升,最大吸附量分别达到3.54、3.75和4.42 g/g。复合吸附剂MWCNT/MgCl2的制备研究,为吸附剂的性能研究提供了基础,对太阳能吸附式空气取水的研究具有潜在意义。

关键词: 复合吸附剂, 多壁碳纳米管, 氯化镁, 水蒸气, 吸附性能

Abstract:

Composite adsorbent MWCNT/MgCl2 was prepared by grinding multi-walled carbon nanotubes (MWCNT) and anhydrous magnesium chloride (MgCl2) with mass fraction of 30%, 40% and 50% respectively. Digital scanning electron microscope (SEM) was used to observe the structure appearance of the composite adsorbent. The thermal conductivity of the composite adsorbent was measured by Hot Disk thermal constant analyzer. Representative temperature and humidity were selected by constant temperature and humidity box to test the water vapor adsorption performance of the composite adsorbent under different working conditions. The pseudo-second order kinetic model was used to fit the experimental data under the condition of 25℃, 50% RH. And the isothermal and hygroscopic curves of three samples were tested by Autosorb-IQ automatic gas analyzer under 25℃. The experimental results show that, under the same temperature and humidity conditions, the adsorption capacity of the composite adsorbent improved with the increase of MgCl2 mass ratios. The adsorption capacity of the composite adsorbent M1, M2 and M3 with the MgCl2 content of 30%, 40% and 50% under the condition of 25℃ and 50% RH is 0.62, 0.79 and 0.94 g/g respectively. When the constant humidity is 50% RH and the temperature changes from 15℃ to 35℃, the adsorption capacity of the composite adsorbent is affected by the dual effects of temperature and saturated water vapor pressure, which first increases and then decreases. When the temperature was fixed at 25℃ and the relative humidity increased from 50% RH to 80% RH, the adsorption capacity of the composite adsorbent greatly increased. Also, the composite adsorbent showed good adsorption ability at low temperature and low humidity of 35℃, 25% RH. When the relative pressure P/P0 was 0.3, the adsorption capacity of M1, M2 and M3 was 0.24, 0.25 and 0.30 g/g, respectively. With the increase of the adsorption relative pressure, the moisture adsorption capacity of the composite adsorbent also improved, reaching 3.54, 3.75 and 4.42 g/g, respectively. The preparation study of the composite adsorbent MWCNT/MgCl2 provides a basis for the study of the properties of the adsorbent, and has potential significance for the study of solar absorption air water intake.

Key words: composite adsorbent, multi-walled carbon nanotubes, magnesium chloride, water vapor, adsorption performance

中图分类号: 

  • TQ 424

表1

复合吸附剂的配制参数"

样品名称MgCl2质量分数/%MgCl2质量/gMWCNT质量/g
M1301.503.50
M2402.003.00
M3502.502.50

图1

复合吸附剂的制备"

图2

吸附性能测试实验恒温恒湿箱示意图及实物图"

图3

复合吸附剂的SEM图"

表2

复合吸附剂的热常数"

样品名称

热导率/

(W/(m?K))

热扩散率/(mm2/s)比热容/(MJ/(kg?K))
M10.0580.8600.068
M20.0600.4450.135
M30.0630.7980.079

图4

吸附实验过程中温湿度变化情况"

图5

复合吸附剂在15℃、50% RH下的吸附曲线"

图6

复合吸附剂在25℃、50% RH下重复实验的吸附曲线(2019年6月)"

图7

复合吸附剂在25℃、50% RH下重复实验的吸附曲线(2019年9月)"

表3

复合吸附剂的吸附量及相对偏差"

样品名称

第1次实验

吸附量/(g/g)

第2次实验

吸附量/(g/g)

相对偏差/%
M10.620.611.6
M20.790.763.8
M30.940.913.2

图8

复合吸附剂在35℃、50% RH下的吸附曲线"

图9

复合吸附剂在25℃、80% RH下的吸附曲线"

图10

复合吸附剂在35℃、25% RH下的吸附曲线"

图11

25℃下复合吸附剂的等温吸湿曲线"

图12

准二级动力学模型对复合吸附剂在25℃、50% RH下吸附的拟合曲线"

表4

准二级动力学模型的参数和相关系数"

样品名称kqe2k/(g/(g·min))R2
M10.0044490.008070.99886
M20.0050230.005320.99806
M30.0052210.003710.99833
1 Khedun C P, Flores R S, Rughoonundun H, et al. World water supply and use: challenges for the future[J]. Encyclopedia of Agriculture and Food Systems, 2014, 5: 450-465.
2 El-Ghonemy A M K. Fresh water production from/by atmospheric air for arid regions, using solar energy: review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 6384-6422.
3 李强, 郝秀渊. 空气取水技术研究综述[J]. 山西建筑, 2016, 42(31): 124-127.
Li Q, Hao X Y. A review on extracting water from air[J]. Shanxi Architecture, 2016, 42(31): 124-127.
4 Sultan A. Absorption/regeneration non-conventional system for water extraction from atmospheric air[J]. Renewable Energy, 2004, 29(9): 1515-1535.
5 耿浩清, 石成君, 苏亚欣. 空气取水技术的研究进展[J]. 化工进展, 2011, 30(8): 1664-1669.
Geng H Q, Shi C J, Su Y X. A review on water extraction from air[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1664-1669.
6 Hall R C. Production of water from the atmosphere by absorption with subsequent recovery in a solar still[J]. Solar Energy, 1966, 10: 42-45.
7 刘业凤, 王如竹, 夏再忠. 连续循环式吸附空气取水系统[J]. 化工学报, 2004, 55(6): 1002-1005.
Liu Y F, Wang R Z, Xia Z Z. Continuous cycle unit for extracting water from air[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(6): 1002-1005.
8 刘金亚, 王佳韵, 王丽伟. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67: 46-50.
Liu J Y, Wang J Y, Wang L W. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67: 46-50.
9 姜海凤, 侯立安, 张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报, 2018, 32(1): 1-7.
Jiang H F, Hou L A, Zhang L. Review on unconventional techniques, materials and equipment for water extraction from air[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 1-7.
10 Srivastava S, Yadav A. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power[J]. Solar Energy, 2018, 169: 302-315.
11 Yu Q F, Zhao H R, Sun S N, et al. Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application[J]. Renewable Energy, 2019, 138: 1087-1095.
12 Tso C Y, Chao C Y H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems[J]. International Journal of Refrigeration, 2012, 35: 1626-1638.
13 de Lange M F, Verouden K J F M, Vlugt T J H, et al. Adsorption-driven heat pumps: the potential of metal-organic frameworks[J]. Chemical Reviews, 2015, 115(22): 12205-12250.
14 Hiroyasu F, Felipe G, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136: 4369-4381.
15 Casey S P, Aydin D, Riffat S, et al. Salt impregnated desiccant matrices for ‘open thermochemical energy storage—hygrothermal cyclic behaviour and energetic analysis by physical experimentation[J]. Energy & Buildings, 2015, 92: 128-139.
16 Jabbari-Hichri A, Bennici S, Auroux A. Effect of aluminum sulfate addition on the thermal storage performance of mesoporous SBA-15 and MCM-41 materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 232-241.
17 Henninger S K, Ernst S J, Gordeeva L, et al. New materials for adsorption heat transformation and storage[J]. Renewable Energy, 2017, 110: 59-68.
18 Courbon E, Ans P D, Permyakova A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541.
19 Jian Y, Ying Y, Chen M, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J]. Applied Thermal Engineering, 2015, 84: 118-125.
20 Rieth A J, Yang S W, Wang E N, et al. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit[J]. American Chemical Society, 2017, 3: 668-672.
21 Solovyeva M V, Gordeeva L G, Krieger T A, et al. MOF-801 as a promising material for adsorption cooling: equilibrium and dynamics of water adsorption[J]. Energy Conversion and Management, 2018, 174: 356-363.
22 Pia K, Rose M, Senkovska I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330.
23 Grekova A, Gordeeva L, Aristov Y. Composite sorbents “Li/Ca halogenides inside multi-wall carbon nano-tubes” for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2016, 155: 176-183.
24 Yan T, Li T X, Li H, et al. Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes[J]. International Journal of Refrigeration, 2014, 46: 165-172.
25 赵惠忠, 程俊峰, 唐祥虎, 等. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验[J]. 化工学报, 2017, 68(5): 1860-1865.
Zhao H Z, Cheng J F, Tang X H, et al. Performance of multi wall carbon nanotubes embedded 13X/MgCl2 composite adsorbent[J]. CIESC Journal, 2017, 68(5): 1860-1865.
26 Grekova A D, Gordeeva L G, Lu Z, et al. Composite “LiCl/MWCNT” as advanced water sorbent for thermal energy storage: sorption dynamics[J]. Solar Energy Materials and Solar Cells, 2018, 176: 273-279.
27 Vincenza B, Larisa G G, Alexandra D G, et al. Water adsorption equilibrium and dynamics of LiCl/MWCNT/PVA composite for adsorptive heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140.
28 高佼. 不同基质混合吸附剂导热性能和渗透率试验研究[D]. 青岛:青岛科技大学, 2014.
Gao J. Experimental study on the thermal conductivity and permeability of compound adsorbent of different matrix materials[D]. Qingdao:Qingdao University of Science & Technology, 2014.
29 Zhang H Q, Yuan Y P, Yang F, et al. Inorganic composite adsorbent CaCl2/MWNT for water vapor adsorption[J]. RSC Advances, 2015, 5: 38630-38639.
30 王凯, 吴静怡, 王如竹. 氯化钙/膨胀石墨混合吸附剂导热性能测试[J]. 上海交通大学学报, 2008, 42(1): 106-109.
Wang K, Wu J Y, Wang R Z. Thermal conductivity measurement of the CaCl2/expanded graphite compound adsorbent[J]. Journal of Shanghai Jiao Tong University, 2008, 42(1): 106-109.
31 刘泽勤, 赵文元, 王宁. 基于混合吸附剂的解吸温度对吸附式制冷系统性能影响的实验研究[J]. 热科学与技术, 2017, 16(4): 320-324.
Liu Z Q, Zhao W Y, Wang N. Effect of desorption temperature on adsorption refrigeration system based on hybrid adsorbent[J]. Journal of Thermal Science and Technology, 2017, 16(4): 320-324.
32 卜宪标, 王令宝, 马伟斌. 硅胶孔径对吸附剂吸湿性能及制冷特性的影响[J]. 哈尔滨工程大学学报, 2012, 33(8): 989-995.
Bu X B, Wang L B, Ma W B. Effect of silica gel pore size on moisture absorption and refrigeration properties of adsorbent[J]. Journal of Harbin Engineering University, 2012, 33(8): 989-995.
33 程俊峰, 赵惠忠, 刘雪燕, 等. 新型空气取水用复合吸附剂的配制及吸附性能研究[J]. 化工新型材料, 2017, 45(10): 168-170.
Cheng J F, Zhao H Z, Liu X Y, et al. Research on the preparation and adsorption property of a new composite adsorbent for extracting water from air[J]. New Chemical Materials, 2017, 45(10): 168-170.
34 赵惠忠, 唐祥虎, 严昊鑫, 等. 基于13X沸石分子筛/MgCl2的复合吸附剂性能实验研究[J]. 制冷学报, 2016, 37(5): 50-56.
Zhao H Z, Tang X H, Yan H X, et al. Experimental study on composite adsorbent performance of zeolite 13X/MgCl2[J]. Journal of Refrigeration, 2016, 37(5): 50-56.
35 Plazinski W, Dziuba J, Rudzinski W. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity [J]. Adsorption-Journal of the International Adsorption Society, 2013, 19(5): 1055-1064.
36 赵惠忠, 李莹莹, 魏存, 等. 吸附式太阳能水管空气取水的特性研究[J]. 可再生能源, 2014, 32(3): 259-264.
Zhao H Z, Li Y Y, Wei C, et al. The characteristic research on solar water-getting tube for extracting water from air with adsorption[J]. Renewable Energy Resources, 2014, 32(3): 259-264.
[1] 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787.
[2] 王康, 张扬, 胡丽琳, 张海, 吕俊复, 岳光溪. 高分压水蒸气对石灰石脱硫过程的影响作用[J]. 化工学报, 2019, 70(8): 3188-3195.
[3] 王锋, 刘艳云, 陈泊宏, 王国强. 操作参数对余热回收甲醇水蒸气重整制氢过程的影响[J]. 化工学报, 2018, 69(S1): 102-107.
[4] 黄金, 李晓朋, 王婷, 胡艳鑫, 盛鑫鑫. 基于MWCNTs/PA复合材料铜表面处理的传热性能[J]. 化工学报, 2018, 69(7): 2956-2963.
[5] 李箫玉, 董卉, 赵小平, 陈娟, 路春美, 姚洪. 富氧燃烧下水蒸气对矿物捕集铬的影响[J]. 化工学报, 2018, 69(6): 2714-2721.
[6] 江罗, 陈标华, 张吉瑞, 傅吉全. 活性炭孔径分布对乙炔氢氯化低固汞催化剂性能的影响[J]. 化工学报, 2018, 69(1): 423-428.
[7] 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370.
[8] 赵惠忠, 程俊峰, 唐祥虎, 张少波. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验[J]. 化工学报, 2017, 68(5): 1860-1865.
[9] 牛永红, 韩枫涛, 李义科, 张雪峰. 松木成型燃料水蒸气气化反应特性[J]. 化工学报, 2017, 68(3): 1191-1198.
[10] 章骅, 鲁文涛, 邵立明, 何品晶. 轧钢含油污泥湿式减压蒸馏处理工艺优化[J]. 化工学报, 2017, 68(12): 4649-4657.
[11] 许晶翠, 张传禹, 葛天舒, 代彦军, 王如竹. 海藻酸钠-醋酸纤维素复合薄膜的制备及除湿性能测试[J]. 化工学报, 2017, 68(1): 256-263.
[12] 高娇, 王丽伟, 周志松, 王如竹. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67(S2): 184-190.
[13] 许嘉兴, 李廷贤, 王如竹. 氯化镁/沸石复合材料的吸附特性及储热性能[J]. 化工学报, 2016, 67(S2): 348-355.
[14] 朱芳啟, 江龙, 王丽伟, 王如竹. MnCl2/CaCl2-NH3再吸附系统的制冷性能[J]. 化工学报, 2016, 67(S2): 32-37.
[15] 秦雯, 周志明, 程振民. 催化剂颗粒形状对甲烷水蒸气重整反应的影响及工业反应器模拟[J]. 化工学报, 2016, 67(2): 563-572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .