化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1812-1821.doi: 10.11949/0438-1157.20190911

• 能源和环境工程 • 上一篇    下一篇

采用R410A单一工质的复叠式空气源热泵

杨永安1(),李瑞申1(),李坤2,孙天慧2   

  1. 1.天津商业大学机械工程学院,天津 300134
    2.华商国际工程有限公司,北京 100084
  • 收稿日期:2019-08-09 修回日期:2019-12-27 出版日期:2020-04-05 发布日期:2020-02-26
  • 通讯作者: 李瑞申 E-mail:yyan@tjcu.edu.cn;ruishli@yeah.net
  • 作者简介:杨永安(1962—),男,高级工程师,硕士生导师, yyan@tjcu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51706154)

Cascade air-source heat pump with R410A single fluid

Yong an YANG1(),Ruishen LI1(),Kun LI2,Tianhui SUN2   

  1. 1.College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
    2.Hua Shang International Engineering Co. , Ltd. , Beijing 100084, China
  • Received:2019-08-09 Revised:2019-12-27 Online:2020-04-05 Published:2020-02-26
  • Contact: Ruishen LI E-mail:yyan@tjcu.edu.cn;ruishli@yeah.net

摘要:

针对空气源热泵在寒冷地区应用中存在的诸多问题,结合复叠式循环与压缩机直流调速技术,提出一种采用R410A单一工质的复叠式空气源热泵(SC-ASHP)系统,既可以按照传统单级压缩制热(SHC)模式运行,又可按复叠式制热(CHC)模式运行。不同工况下,对SC-ASHP系统在两种不同制热模式运行时的压缩比、排气温度、制热量与性能系数(COP)进行了模拟计算与实验研究,结果表明:低温环境下,CHC模式压缩比和排气温度远低于SHC模式;在冷凝温度46℃,蒸发温度-35℃工况下,CHC模式COP高于1.8,压缩机排气温度低于120℃,高低温压缩机压缩比均不超过5.0,系统可以稳定可靠运行;此外,CHC模式下提高低温压缩机转速可以持续提高系统制热量,满足低温环境下的供暖需求;新系统扩大了空气源热泵系统的应用范围。

关键词: 制热, 复叠式, 性能系数, 变速压缩机, 模拟

Abstract:

In the light of the problems existing in the application of air source heat pump in cold regions, a new single-fluid cascade air-source heat pump (SC-ASHP) has been developed, combining with cascade cycle and compressor DC speed regulation technology. The new-type heat pump can operate not only in a single-stage heating cycle (SHC) mode, but also in a cascade heating cycle (CHC) mode. Under different operating conditions, simulation calculations and experimental studies were performed on the compression ratio, exhaust temperature, heating capacity, and coefficient of performance (COP) of the SC-ASHP system in two different heating modes. The results show that, in low temperature environment, the compressor discharge temperature and the compression ratio of the CHC mode are much lower than the SHC mode; when the condensing temperature of 46℃ and an evaporating temperature of -35℃, COP of the CHC mode is higher than 1.8, the compressor discharge temperature is lower than 120℃, and the compression ratio is not more than 5.0, the system can operate stably and reliably; in addition, the heating capacity is rising steadily by increasing the speed of the low temperature compressor in low temperature environment, meeting the heating supply. New heat pump system expanded the application range of air source heat pump system.

Key words: heating, cascade, COP, variable speed compressor, simulation

中图分类号: 

  • TK 519

图1

SC-ASHP系统原理图"

表1

不同运行模式下各阀门及压缩机状态"

Mode

Solenoid

valve-Ⅰ

Solenoid

valve-Ⅱ

Solenoid

valve-Ⅲ

Four-way

valve

EEV-ⅠEEV-Ⅱ

Upper stage

compressor

Lower stage

compressor

SRCOFFOFFONOFFOFFONOFFON
SHCONOFFONONOFFONOFFON
CHCONONOFFONONONONON

图2

SC-ASHP系统循环图"

图3

SC-ASHP系统实验装置图"

表2

实验系统主要配置"

EquipmentModelManufacturer
lower-stage compressorLNB42FSCMCMITSUBISHI
upper-stage compressorTNB220FFEMCMITSUBISHI

electronic expansion valve

E2V30BSM00,

E2V24BSM00

CAREL

electric control valveVAI61.20-6.3SIEMENS
solenoid valveEVR15DANFOSS
cascade heat exchangeA=3.10 m2AIBAOSY
evaporator? 9.52 mm,1.73 m2
electric heating tube12 kW
condensern=5,A=3.47 m2DONGDA
water tank1250 mm×700 mm×1250 mm

图4

压缩机排气温度比较"

图6

实验压缩比比较"

图5

模拟计算压缩比比较"

图7

不同低温压缩机转速的制热量变化(模拟)"

图8

不同低温压缩机转速的制热量变化(实验)"

图9

不同低温压缩机转速的COP变化"

图10

制热量比较"

图11

制热性能系数比较"

1 陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036.
Chen Z D, Luo H L, Liu J C, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9): 4030-4036.
2 沈明, 宋之平. 空气源热泵应用范围北扩的可能性分析及其技术措施述评[J]. 暖通空调, 2002, (6): 37-39.
Shen M, Song Z P. Applicability of air-source heat pumps in colder climate and relevant measures[J]. Heating Ventilating & Air Conditioning, 2002, (6): 37-39.
3 柴沁虎, 马国远. 空气源热泵低温适应性研究的现状及进展[J]. 能源工程, 2002, (5): 25-31.
Chai Q H, Ma G Y. State of knowledge and current challenges in the ASHP developed for the cold areas[J]. Energy Engineering, 2002, (5): 25-31.
4 Chua K J, Chou S K, Yang W M. Advances in heat pump systems: a review[J]. Applied Energy, 2010, 87(12): 3611-3624.
5 李玮豪, 邱君君, 张小松. 无霜空气源热泵系统冬季运行性能实验[J]. 化工学报, 2018, 69(12): 5220-5228.
Li W H, Qiu J J, Zhang X S. Experimental research on new type of frost-free air source heat pump system in winter[J]. CIESC Journal, 2018, 69(12): 5220-5228.
6 徐俊芳, 赵耀华, 全贞花, 等. 新型空气-水双热源复合热泵系统除霜特性及能耗[J]. 化工学报, 2018, 69(6): 2646-2654.
Xu J F, Zhao Y H, Quan Z H, et al. Defrosting characteristics and energy consumption of new air-water dual source composite heat pump system[J]. CIESC Journal, 2018, 69(6): 2646-2654.
7 张森林.空气源热泵低温特性研究[D]. 天津: 天津商业大学, 2014.
Zhang S L. Researching on the performance of air source heat pump in low temperature[D]. Tianjin: Tianjin University of Commerce, 2014.
8 武文彬, 王伟, 金苏敏, 等. 两级压缩空气源热泵热水器实验研究[J]. 制冷学报, 2009, 30(1): 35-38.
Wu W B, Wang W, Jin S M, et al. Experiment on two-stage compression air-source heat pump water heater[J]. Journal of Refrigeration, 2009, 30(1): 35-38.
9 石文星, 田长青, 王森. 寒冷地区用空气源热泵的技术进展[J]. 流体机械, 2003, 31(z1): 43-48.
Shi W X, Tian C Q, Wang S. Technical review of air-source heat pump for cold regions[J]. Fluid Machinery, 2003, 31(z1): 43-48.
10 王伟, 马最良, 姚杨. 空气源热泵机组新型低温运行工况稳态特性研究[J]. 建筑科学, 2007, 23(10): 28-31.
Wang W, Ma Z L, Yao Y. Study on steady state characteristics of air source heat pump (ASHP) under new working conditions in cold environment[J]. Building Science, 2007, 23(10): 28-31.
11 Bertsch S S, Groll E A. Two-stage air-source heat pump for residential heating and applications in northern U. S. climates[J]. International Journal of Refrigeration, 2008, 31(7): 1282-1292.
12 Wang X D, Hwang Y, Radermacher R. Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant[J]. International Journal of Refrigeration, 2009, 32(6): 1442-1451.
13 Jin X, Wang S G, Zhang T F. Intermediate pressure of two-stage compression system under different conditions based on compressor coupling model[J]. International Journal of Refrigeration, 2012, 35(4): 827-840.
14 金旭, 王树刚, 张腾飞, 等. 变工况双级压缩中间压力及其对系统性能的影响[J]. 化工学报, 2012, 63(1): 96-102.
Jin X, Wang S G, Zhang T F, et al. Intermediate pressure and its effect on performance of two-stage compression system with variable operating mode[J]. CIESC Journal, 2012, 63(1): 96-102.
15 田长青, 石文星, 王森. 用于寒冷地区双级压缩变频空气源热泵的研究[J]. 太阳能学报, 2004, (3): 388-393.
Tian C Q, Shi W X, Wang S. Research on two-stage compression variable frequent air source heat pump in cold regions[J]. Acta Energiae Solaris Sinica, 2004, (3): 388-393.
16 蒋爽, 王树刚, 王凤. 双级压缩空气源热泵制热性能仿真优化[J]. 中国科技论文, 2017, 12(1): 24-31.
Jiang S, Wang S G, Wang F. Heating performance optimization of a two-stage compression air source heat pump based on simulation[J]. China Science Paper, 2017, 12(1): 24-31.
17 李双双, 王树刚. 变频双级压缩空气源热泵系统中间喷射状态对性能的影响研究[J]. 建筑科学, 2016, 32(8): 56-63.
Li S S, Wang S G. Study on impact of intermediate injection conditions on performance of two-stage compression source heat pumps with frequency conversion[J]. Building Science, 2016, 32(8): 56-63.
18 Zehnder M. Efficient air-water heat pumps for high temperature life residential heating including oil migration aspects[R]. Swiss: Laboratory of Industrial Energetics, 2000.
19 王沣浩, 王志华, 郑煜鑫, 等. 低温环境下空气源热泵的研究现状及展望[J]. 制冷学报, 2013, 34(5): 47-54.
Wang F H, Wang Z H, Zheng Y X, et al. Research progress and prospect of air source heat pump in low temperature environment[J]. Journal of Refrigeration, 2013, 34(5): 47-54.
20 Roh C W, Kim M S. Effect of vapor-injection technique on the performance of a cascade heat pump water heater[J]. International Journal of Refrigeration, 2014, 38: 168-177.
21 巫江虹, 游少芳, 谢方, 等. 蓄热型热泵热水器单级与复叠式循环性能比较[J]. 化工学报, 2011, 62(7): 1879-1884.
Wu J H, You S F, Xie F, et al. Performance comparison of single stage and cascade heat pump water heater with PCM [J]. CIESC Journal, 2011, 62(7): 1879-1884.
22 Kim D H, Park H S, Kim M S. Optimal temperature between high and low stage cycles for R134a/R410A cascade heat pump based water heater system[J]. Experimental Thermal and Fluid Science, 2013, 47: 172-179.
23 天津商业大学.变流量单工质共用换热器复叠热泵系统: 201610288319.8[P]. 2016-07-20.
Tianjin University of Commerce. Variable flow single-fluid shared heat exchanger cascade heat pump system: 201610288319.8[P]. 2016-07-20.
24 曲明璐, 李天瑞, 樊亚男, 等. 复叠式空气源热泵蓄能除霜与常规除霜特性实验研究[J]. 制冷学报, 2017, 38(1): 34-39.
Qu M L, Li T R, Fan Y N, et al. Experimental study on characteristics of energy storage defrosting and conventional defrosting for cascade air source heat pump[J]. Journal of Refrigeration, 2017, 38(1): 34-39.
25 Qu M L, Fan Y N, Chen J B, et al. Experimental study of a control strategy for a cascade air source heat pump water heater [J]. Applied Thermal Engineering, 2016, 110: 835-843.
26 张红瑞, 刘学来, 李永安, 等. 节能高效空气源复叠式热泵系统[J]. 暖通空调, 2010, 40(11): 108-112.
Zhang H R, Liu X L, Li Y A, et al. Energy-efficient cascade air-source heat pump system[J]. Heating Ventilating & Air Conditioning, 2010, 40(11): 108-112.
27 王林, 陈光明, 陈斌, 等. 一种用于低温环境下新型空气源热泵循环研究[J]. 制冷学报, 2005, 26 (2): 34-38.
Wang L, Chen G M, Chen B, et al. Cycle analysis of heating and refrigeration in new air-source heat pump [J]. Journal of Refrigeration, 2005, 26(2): 34-38.
28 浙江大学. 扩大在低温环境下热泵制热能力的方法及装置: 03115636.3[P]. 2003-08-20.
University Zhejiang. Method and device for expanding heat pump heating capacity in low temperature environment: 03115636.3[P]. 2003-08-20.
29 余延顺, 何雪强, 江辉民, 等. 单-双级混合复叠空气源热泵机组制热性能实验研究[J]. 南京理工大学学报(自然科学版), 2012, 36(6): 1036-1041.
Yu Y S, He X Q, Jiang H M, et al. Experimental study on heating performances of hybrid single-double stage cascade air-source heat pump unit[J]. Journal of Nanjing University of Science and Technology, 2012, 36(6): 1036-1041.
30 谭周芳, 刘剑锋. 空调器模拟设计中的压缩机性能拟合[J]. 制冷, 1997, 58(1): 46-50.
Tan Z F, Liu J F. Computation of compressor performance curve in air conditioner limitation design[J]. Refrigeration, 1997, 58(1): 46-50.
31 Wen H L. Simplified steady-state modeling for variable speed compressor[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2013, 50(1): 318-326.
[1] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[2] 周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 1802-1811.
[3] 李文秀, 张羽, 曹颖, 丁忠瀚, 赵思雨, 张弢. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682.
[4] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[5] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[6] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[7] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[8] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[9] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[10] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[11] 鲁玉莹, 余黎明, 杨加可, 曾武松, 陆江银. 响应面法优化制备LDHs-CRMA复合改性沥青及其表征[J]. 化工学报, 2020, 71(3): 1362-1369.
[12] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[13] 李佳, 梁贞菊, 王照亮, 赵健, 唐大伟. 不同分子模型对甲烷水合物分解微观特性表征[J]. 化工学报, 2020, 71(3): 955-964.
[14] 王湘月, 周晓君, 阳春华. 不确定条件下的湿法炼锌除铜过程机会约束优化控制[J]. 化工学报, 2020, 71(3): 1226-1233.
[15] 耿志强, 曾荣甫, 徐圆, 韩永明, 顾祥柏. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐忠. 含氢混合气体的压缩因子 [J]. CIESC Journal, 1981, 32(3): 260 -267 .
[2] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[3] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[4] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[5] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[6] 张益波, 任佳, 潘海鹏, 戴文战. 一类热定型机换热器的动态建模方法 [J]. 化工学报, 2011, 62(8): 2360 -2366 .
[7] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[8] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[9] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[10] 金旭1,王树刚1,张腾飞1,李照义2,祖丰1. 变工况双级压缩中间压力及其对系统性能的影响[J]. 化工学报, 2012, 63(1): 96 -102 .