化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1734-1743.doi: 10.11949/0438-1157.20190903

• 表面与界面工程 • 上一篇    下一篇

节流孔出气模式对静压干气密封稳态性能影响

车健(),江锦波(),李纪云,彭旭东,马艺,王玉明   

  1. 浙江工业大学过程装备及其再制造教育部工程研究中心,浙江 杭州 310014
  • 收稿日期:2019-08-06 修回日期:2019-10-28 出版日期:2020-04-05 发布日期:2019-11-28
  • 通讯作者: 江锦波 E-mail:15990047005@163.com;jinbo_110@163.com
  • 作者简介:车健(1994—),男,硕士研究生,15990047005@163.com
  • 基金资助:
    国家自然科学基金项目(51705458);浙江省自然科学基金项目(LY18E050026)

Effect of orifice exhaust mode on steady performance of hydrostatic dry gas seal

Jian CHE(),Jinbo JIANG(),Jiyun LI,Xudong PENG,Yi MA,Yuming WANG   

  1. Engineering Research Center of Process Equipment and Its Remanufacturing of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2019-08-06 Revised:2019-10-28 Online:2020-04-05 Published:2019-11-28
  • Contact: Jinbo JIANG E-mail:15990047005@163.com;jinbo_110@163.com

摘要:

以径向单列和多列小孔节流静压干气密封为研究对象,采用湍流大涡模拟方法分析了节流孔位置和气膜厚度对单列小孔节流静压干气密封开启力、气膜刚度和泄漏率等稳态性能的影响,对比分析了不同节流孔径向出气模式和周向排布对径向多列节流静压干气密封稳态性能的影响,获得了不同膜厚条件下最佳的节流孔出气模式,在此基础上提出一种出气模式在线可调的新型静压干气密封结构。结果表明:相较于经典单列节流静压干气密封,小膜厚时(膜厚<10 μm)径向上、下游同时开孔的多列节流静压干气密封,以及大膜厚时(膜厚>10 μm)径向上、中、下游同时开孔的多列节流静压干气密封开启力和气膜刚度显著提高,最大增幅分别达到15%和25%;通过选取合理的节流孔出气模式可满足不同条件下静压干气密封高气膜承载能力、低泄漏率和低耗气量的性能需求。

关键词: 静压干气密封, 数值模拟, 湍流, 计算流体力学, 节流孔

Abstract:

Taking hydrostatic dry gas seal (DGS) with single-row and multi-row orifices in the radial direction as the research object, the influence of orifice position and film thickness on steady-state performance, including opening force, film stiffness and leakage rate,of hydrostatic DGS with single-row orifice were analyzed utilizing large eddy simulation (LES) method, together with the influence of different exhaust modesand circumferential position of orifice on steady-state performance of hydrostatic DGS with multi-row orifices. The optimized exhaust modes for large opening force and low leakage rate were obtained at different film thickness, and a new type of hydrostatic DGS with adjustable exhaust mode was proposed on this basis. The results show that compared to typical hydrostatic DGS with single-row orifice, opening force and film stiffness of hydrostatic DGS with up-down stream orifices and with up-mid-down stream orifices enhanced remarkably at when film thickness smaller than 10 μm and larger than 10 μm, respectively. The maximum increment ratio of opening force and film stiffness of hydrostatic DGS with multi-row orifices are 15% and 25% larger than those of hydrostatic DGS with single-row orifice, respectively. By selecting a reasonable orifice outlet mode, it can meet the performance requirements of static gas dry gas seal high gas film carrying capacity, low leakage rate and low gas consumption under different conditions.

Key words: hydrostatic dry gas seal, numerical simulation, turbulent flow, computational fluid dynamics, orifice

中图分类号: 

  • TH 117.2

图1

静压干气密封几何结构图"

图2

静压干气密封计算流体域网格划分"

表1

静压干气密封初始计算参数"

参数数值参数数值
密封端面内径ri/mm29.5均压槽深度hd/mm0.05
密封端面外径ro/mm36.5节流孔个数N12
节流孔位置半径r/mm33.0气膜厚度h/μm12
节流孔直径d/mm0.2密封外径压力po/MPa0.3
节流孔长度l/mm0.5密封内径压力pi/MPa0.1
均压槽宽度w/mm1.0节流气压力ps/MPa0.5

图3

不同数值模拟方法所得气膜压力分布与实测值对比"

图4

网格无关性验证"

图5

经典小孔节流静压干气密封稳态性能参数随气膜厚度变化规律"

图6

节流孔径向位置对静压干气密封稳态性能影响"

图7

径向多列节流孔静压干气密封端面结构示意图"

图8

不同出气模式静压干气密封开启力与泄漏率"

图9

不同出气模式下静压干气密封径向压力分布"

图10

不同出气模式静压干气密封稳态性能参数随膜厚变化规律"

图11

一种出气模式可调静压干气密封静环及调节环结构示意图"

图12

不同调节环周向夹角对应的静压干气密封出气模式"

图13

不同出气模式对应的静压干气密封稳态性能参数"

1 Fujiwara S, Fuse T. Advanced aerostatic dry gas seal[C]//16th International Conference on Fluid Sealing. BHR Group 2000 Fluid Sealing, 2000:483-499.
2 刘墩, 刘育华, 陈世杰. 静压气体润滑[M]. 哈尔滨:哈尔滨工业大学出版社, 1990.
Liu D, Liu Y H, Chen S J. Aerostatic Gas Lubrication[M]. Harbin: Harbin Institue of Technology Press, 1990.
3 Cheng H S, Chow C Y, Wilcock D F. Behavior of hydrostatic and hydrodynamic noncontacting face seals[J]. ASME Journal of Tribology, 1967, 90(2): 521-519.
4 Stolarski T A, Xue Y. Performance study of a back-depression mechanical dry gas seal [J]. Proceedings of the IMechE, Part J. Journal of Engineering Tribology, 1998, 212(4): 279-290.
5 Xu H J, Song P Y. Influence of the groove width on the aerostatic dry gas seal [J]. Applied Mechanics and Materials, 2013, 365/366: 318-322.
6 许恒杰, 宋鹏云, 余建平. 静压气体润滑机械密封性能分析[J]. 润滑与密封, 2013, 38(8): 41-45.
Xu H J, Song P Y, Yu J P. Analysis on the seal performance of aerostatic gas lubricating mechanical seal [J]. Lubrication Engineering, 2013, 38(8): 41-45.
7 管羽刚, 贾祥际, 王东生. 静压干气密封特性研究及节流孔参数优化方法探讨[J]. 化工设备与管道, 2019, 56(2): 53-59.
Guan Y G, Jia X J, Wang D S. Study of seal performance of static dry gas and discussion of parameter optimization method for orifice [J]. Process Equipment & Piping, 2019, 56(2): 53-59.
8 Li S X, Zhu L, Cai J N, et al. Study on hydrostatic gas lubricated non-contacting mechanical seal[J]. High Technology Letters, 2012, 18(4): 433-440.
9 扈中平, 李双喜, 蔡纪宁, 等. 自加压式动静压混合式气体润滑密封的性能分析[J]. 润滑与密封, 2011, 36(4): 48-52, 86.
Hu Z P, Li S X, Cai J N, et al. Study on self-pressurized hydrostatic-dynamic hybrid lubricaiton gas seal[J]. Lubrication Engineering, 2011, 36(4): 48-52, 86.
10 李双喜, 张树强, 蔡纪宁, 等. 动静压混合式气体密封的特性分析[J]. 摩擦学学报, 2011, 31(5): 457-466.
Li S X, Zhang S Q, Cai J N, et al. Performance study of dynamic-hydrostatic hybrid gas seal[J]. Tribology, 2011, 31(5): 457-466.
11 金朝旭, 李双喜, 蔡纪宁, 等. 可调控型气膜润滑密封静压结构参数优化[J]. 化工学报, 2015, 66(4):1425-1433.
Jin Z X, Li S X, Cai J N, et al. Hydrostatic structural parameters optimization of regulatable gas lubricated seal[J]. CIESC Journal, 2015, 66(4): 1425-1433.
12 刘雨川, 徐万孚, 陈国林, 等. 端面气膜密封的高性能端面结构[J]. 航空学报, 2000, 21(2): 187-190.
Liu Y C, Xu W F, Chen G L, et al. Face configuration with high performance for gas film face seal[J]. Acta Aeronautica et Astronautical Sinica, 2000, 21(2): 187-190.
13 赵艳凤, 彭旭东, 江锦波, 等. 均压槽结构形状对静压干气密封性能影响分析[J]. 摩擦学学报, 2017, 37(5): 677-685.
Zhao Y F, Peng X D, Jiang J B, et al. Influence of the pressure-equalizing groove on the seal performance of hydrostatic dry gas seal[J]. Tribology, 2017, 37(5): 677-685.
14 许恒杰, 宋鹏云. 三自由度微扰下的静压干气密封动态特性分析[J]. 排灌机械工程学报, 2017, 35(1): 56-64.
Xu H J, Song P Y. Analysis on dynamic characteristics of aerostatic dry gas seals with three degrees of freedom perturbation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(1): 56-64.
15 张树强, 李双喜, 蔡纪宁, 等. 动静压混合式气体密封追随性及主动调控振动特性数值分析[J]. 航空学报, 2012, 33(7): 1336-1346.
Zhang S Q, Li S X, Cai J N, et al. Numerical analysis for the tracking property and active regulation vibration characteristics of dynamic-hydrostatic hybrid gas seals[J]. Acta Aeronautica et Astronautical Sinica, 2012, 33(7): 1336-1346.
16 尹源, 刘向峰, 丛国辉, 等. 外加压静压型机械密封均压槽设计对动态性能的影响[J]. 流体机械, 2017, 45(4): 15-21.
Yin Y, Liu X F, Cong G H, et al. Influence of equalizing grooves design for externally pressurized hydrostatic mechanical seal on dynamic performance[J]. Fluid Machinery, 2017, 45(4): 15-21.
17 Zhu J, Chen H, Chen X. Large eddy simulation of vortex shedding and pressure fluctuation in aerostatic bearings[J]. Journal of Fluids and Structures, 2013, 40:42-51.
18 Li Y T, Han D. Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance[J]. Tribology International, 2007, 40(7):1120-1126.
19 Chen X D, He X. The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography [J]. Tribology International, 2006, 39(11): 1336-1341.
20 Chen X D, Chen H, Luo X, et al. Air vortices and nano-vibration of aerostatic bearings[J]. Tribology Letters, 2011, 42(2): 179-183.
21 李运堂, 蔺应晓, 朱红霞, 等. 基于大涡模拟静压气体推力轴承微幅自激振动特性分析[J]. 机械工程学报, 2013, 49(13): 56-62.
Li Y T, Lin Y X, Zhu H X, et al. Analysis of the micro self-vibration of aerostatic thrust bearing based on large eddy simulation[J]. Journal of Mechanical Engineering, 2013, 49(13): 56-62.
22 Li Y T, Lin Y X, Zhu H X, et al. Research on the gas pressure fluctuation characteristics inside an aerostatic thrust bearing with a pocketed orifice-type restrictor[J]. Tribology Transactions, 2014, 57(1):28-35.
23 Belforte G, Raparelli T, Viktorov V, et al. Discharge coefficients of orifice-type restrictor for aerostatic bearings[J]. Tribology International, 2007, 40: 512-521.
24 Belforte G, Raparelli T, Trivella A, et al. CFD analysis of a simple orifice-type feeding system for aerostatic bearings[J]. Tribology Letters, 2015, 58(2):25.
25 Huang M, Xu Q, Li M, et al. A calculation method on the performance analysis of the thrust aerostatic bearing with vacuum pre-load[J]. Tribology International, 2017, 110:125-130.
26 Lai T H, Chang T Y, Yang Y L, et al. Parameters design of a membrane-type restrictor with single-pad hydrostatic bearing to achieve high static stiffness[J]. Tribology International, 2017, 107:206-212.
27 Jin Z X, Li S X, Cai J N, et al. Optimizing on hydrostatic structural parameters for regulatable dry gas seal based on central composite design test[J]. Industrial Lubrication and Tribology, 2016, 68(1):99-105.
28 Yoshimoto S, Suganuma N, Yagi K, et al. Numerical calculations of pressure distribution in the bearing clearance of circular aerostatic thrust bearings with a single air supply inlet[J]. ASME Journal of Tribology, 2007, 179(2): 384-390.
29 Ma W, Cui J W, Liu Y M, et al. Improving the pneumatic stability of aerostatic thrust bearing with recess using damping orifices[J]. Tribology International, 2016, 103: 281-288.
30 Al-Bender F. On the modeling of the dynamic characteristics of aerostatic bearing films from stability analysis to active compensation[J]. Precision Engineering, 2009, 33: 117 -126.
31 Aoyama T, Kakinuma Y, Kobayashi Y. Numerical and experimental analysis for the small vibration of aerostatic guideways[J]. CIRP Annals, 2006, 55(1):419-422.
[1] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[2] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[3] 李济超, 季璨, 吕明明, 王静, 刘志刚, 李慧君. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1597-1608.
[4] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[5] 亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
[6] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[7] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[8] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[9] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[10] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[11] 孙宗康, 张笑丹, 杨林军, 陈帅, 吴新. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325.
[12] 董吉开, 杜文莉, 王冰, 许乔伊. 湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020, 71(3): 1163-1173.
[13] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[14] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[15] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[3] 许涌深 王丽丽 董巍 袁才登. 纤维素的乳液接枝共聚合(Ⅰ)引发剂对纤维素的氧化降解作用 [J]. CIESC Journal, 2007, 58(4): 1059 -1063 .
[4] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[5] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[6] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[7] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788 -800 .
[8] 陈小艳, 周骛, 蔡小舒, 黄燕, 袁益超. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2): 480 -487 .
[9] 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602 -1606 .
[10] . 本期封面、广告页、中英文目次表[J]. 化工学报, 2016, 67(9): 0 .