化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1580-1587.doi: 10.11949/0438-1157.20190886

• 流体力学与传递现象 • 上一篇    下一篇

相变套管式储热系统放冷性能实验研究

白志蕊1(),徐洪涛1(),屈治国2,张剑飞2,苗玉波1   

  1. 1.上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室,上海 200093
    2.西安交通大学能源与动力工程学院, 热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-08-05 修回日期:2019-12-24 出版日期:2020-04-05 发布日期:2020-01-04
  • 通讯作者: 徐洪涛 E-mail:baizr210@163.com;htxu@usst.edu.cn
  • 作者简介:白志蕊(1995—),女,硕士研究生, baizr210@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFF0216003);上海市国际科技合作基金项目(18160743600)

Experimental study of phase change sleeve tube thermal storage system performance during charging

Zhirui BAI1(),Hongtao XU1(),Zhiguo QU2,Jianfei ZHANG2,Yubo MIAO1   

  1. 1.Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-08-05 Revised:2019-12-24 Online:2020-04-05 Published:2020-01-04
  • Contact: Hongtao XU E-mail:baizr210@163.com;htxu@usst.edu.cn

摘要:

搭建了套管式相变储热实验系统,分别填充不同质量分数膨胀石墨与正十五烷制备而成的复合相变材料,对系统进行重复充放冷循环实验。采用有效储热比Est和储能效率ε来表征系统性能,研究了复合相变材料中换热增强对套管式潜热储能系统放冷性能的影响。结果表明:同Re数下,相变材料热导率为0.14 W·m-1·K-1(工况A)放冷结束时间为1770 s,相同Re条件下热导率提升至7.10 W·m-1·K-1(工况B)和11.60 W·m-1·K-1(工况C)的结束时间分别可缩短77.3%、78.9%;热导率的增加可显著提高系统有效储热比Est和储能效率ε,热导率从0.14 W·m-1·K-1增加到11.60 W·m-1·K-1Est在层流区、过渡区和湍流区分别可提升33.3%、350.0%及129.6%,ε分别可提升26.8%、52.9%及14.6%;Re的增加使得工况A和工况B中Estε呈现下降趋势,工况C中EstRe=4298出现峰值1.62。

关键词: 相变套管式储热系统, 复合材料, 相变, 热传导, 有效储热比

Abstract:

In this paper, a casing type phase change heat storage experiment system is set up, which is filled with composite phase change materials made of expanded graphite and n-pentadecane with different mass fractions, and the system is charged and discharged repeatedly . The heat transfer enhancement of the sleeve tube thermal storage system was characterized by effective heat storage ratio Est and energy storage efficiency ε. The results show that the discharging process was completed by 1770 s (Condition A, kp =0.14 W·m-1·K-1). The completed time for Condition B (kp =7.10 W·m-1·K-1) and Condition C (kp =11.60 W·m-1·K-1) were shortened by 77.3% and 78.9% under the same Reynolds number. Est and ε of the system increase significantly with the increasing thermal conductivity. As the thermal conductivity increases from 0.14 W·m-1·K-1 to 11.60 W·m-1·K-1, Est increased by 33.3%, 350.0% and 129.6% in the laminar region, transition region and turbulent region, and ε increased by 26.8%, 52.9% and 14.6% respectively. However, Est and ε decrease as Re increases in Condition B and Condition C. Est in Condition C shows a peak of 1.62 at Re = 4298.

Key words: phase change sleeve tube thermal storage system, composites, phase change, heat Conduction, effective heat storage ratio

中图分类号: 

  • TK 123

图 1

相变材料强化储热实验系统图"

图 2

实验LHTES系统布置图"

表 1

复合PCM物性参数"

样品编号

EG质量分数

ω/%

相变温度

Tp/℃

密度ρp/

(kg·m-3)

比热容(固/液)

cp,p/(kJ·kg-1·℃-1)

热导率

kp /(W·m-1·K-1)

相变潜热

L/(kJ·kg-1)

工况 A0107693.323/2.1840.14168
工况 B15108502.001/1.4797.10135
工况 C30109002.238/1.61011.60100

图3

放冷过程中PCM温度Tpi及HTF温度Thi随时间变化的曲线"

图4

Re=4298时工况 C中Est、ε及Qeff与出口温度之间的关系"

图5

不同工况下系统的性能指标分布"

1 Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable Sustainable Energy Rev., 2009, 13(2): 318-345.
2 Mahdi J M, Lohrasbi S, Nsofor E C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. Int. J. Heat Mass Transfer, 2019, 137: 630-649.
3 Ding W, Bonk A, Gussone J, et al. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage[J]. J. Energy Storage, 2018, 15: 408-414.
4 胡康, 徐飞, 陈磊, 等. 利用相变储热提升电力系统可再生能源消纳[J]. 工程热物理学报, 2018, 39(1): 1-7.
Hu K, Xu F, Chen L, et al. Improve the integration of renewable energy sources into power system by the usage of phase-change heat storage[J]. J. Eng. Thermophys., 2018, 39(1): 1-7.
5 Rahman A, Smith A D, Fumo N. Performance modeling and parametric study of a stratified water thermal storage tank[J]. Appl. Therm. Eng., 2016, 100: 668-679.
6 Tang J L, Ouyang Z R, Shi Y Y. Experimental analysis and FLUENT simulation of a stratified chilled water storage system[J]. Eur. Phys. J. Plus, 2019, 134(3): 118-126.
7 Nazir H, Batool M, Bolivar O F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. Int. J. Heat Mass Transfer, 2019, 129: 491-523.
8 Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable Sustainable Energy Rev., 2010, 14(2): 615-628.
9 Kalnæs S E, Jelle B P. Phase change materials and products for building applications: a state-of-the-art review and future research opportunities[J]. Energ. Buildings, 2015, 94: 150-176.
10 Su D, Jia Y, Alva G, et al. Comparative analyses on dynamic performances of photovoltaic-thermal solar collectors integrated with phase change materials[J]. Energy Convers. Manage., 2017, 131: 79-89.
11 Yau Y H, Rismanchi B. A review on cool thermal storage technologies and operating strategies[J]. Renewable Sustainable Energy Rev., 2012, 16(1): 787-797.
12 Bejarano G, Vargas M, Ortega M G, et al. Efficient simulation strategy for PCM-based cold-energy storage systems[J]. Appl. Therm. Eng., 2018, 139: 419-431.
13 Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable Sustainable Energy Rev., 2017, 74: 26-50.
14 Huang X, Alva G, Jia Y, et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable Sustainable Energy Rev., 2017, 72: 128-145.
15 Mahdi J M, Nsofor E C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Appl. Energ., 2018, 211: 975-986.
16 Yagci O K, Avci M, Aydin O. Melting and solidification of PCM in a tube-in-shell unit: effect of fin edge lengths ratio[J]. J. Energy Storage, 2019, 24: 100802.
17 Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Appl. Therm. Eng., 2018, 144: 721-725.
18 Qiu Z, Ma X, Li P, et al. Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications[J]. Renewable Sustainable Energy Rev., 2017, 77: 246-262.
19 Elbahjaoui R, El Qarnia H. Transient behavior analysis of the melting of nanoparticle-enhanced phase change material inside a rectangular latent heat storage unit[J]. Appl. Therm. Eng., 2017, 112: 720-738.
20 陈华, 柳秀丽, 杨亚星, 等. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70: 86-92.
Chen H, Liu X Y, Yang Y X, et al. Numerical simulation of foam metal copper/paraffin phase change thermal storage process[J]. CIESC Journal, 2019, 70: 86-92.
21 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
Zhou S X, Zhang X L, Liu S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297.
22 Yang X, Lu Z, Bai Q, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Appl. Energ., 2017, 202: 558-570.
23 Zhao J, Rao Z, Liu C, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. Int. J. Heat Mass Transfer, 2016, 99: 252-260.
24 Esapour M, Hamzehnezhad A, Rabienataj D A A, et al. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system[J]. Energy Convers. Manage., 2018, 171: 398-410.
25 Chen C, Zhang H, Gao X, et al. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM[J]. Energy Convers. Manage., 2016, 126: 889-897.
26 Tay N H S, Belusko M, Bruno F. An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems[J]. Appl. Energ., 2012, 91(1): 309-319.
27 Belusko M, Halawa E, Bruno F. Characterising PCM thermal storage systems using the effectiveness-NTU approach[J]. Int. J. Heat Mass Transfer, 2012, 55(13/14): 3359-3365.
28 Zhao D, Tan G. Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application[J]. Appl. Energ., 2015, 138: 381-392.
29 Fang Y, Niu J, Deng S. Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM[J]. Energ. Buildings, 2018, 160: 10-18.
30 Angelini G, Lucchini A, Manzolini G. Comparison of thermocline molten salt storage performances to commercial two-tank configuration[J]. Energ. Procedia, 2014, 49: 694-704.
31 Fang Y, Niu J, Deng S. An analytical technique for the optimal designs of tube-in-tank thermal energy storage systems using PCM[J]. Int. J. Heat Mass Transfer, 2019, 128: 849-859.
[1] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[2] 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888.
[3] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[4] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[5] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[6] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[7] 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408.
[8] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[9] 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870.
[10] 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
[11] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[12] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[13] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[14] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[15] 张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[2] 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52 -62 .
[3] 张笛, 肖清贵, 张炳烛, 许永权, 徐红彬, 张懿. 氯氧化铋在盐酸溶液中溶解度的测定和关联[J]. 化工学报, 2014, 65(6): 1987 -1992 .
[4] 李刚, 王周为, 李春霞, 李雪梅, 何涛, 高从堦. 界面聚合中空纤维正渗透膜的制备和表征[J]. 化工学报, 2014, 65(8): 3082 -3088 .
[5] 朱庆山, 李洪钟. 难选铁矿流态化磁化焙烧研究进展与发展前景[J]. 化工学报, 2014, 65(7): 2437 -2442 .
[6] 李洪懿, 翟丁, 周勇, 高从堦. 纳米聚苯胺改性聚哌嗪酰胺纳滤膜的制备[J]. 化工学报, 2015, 66(1): 142 -148 .
[7] 吕林英, 蓝兴英, 吴迎亚, 燕兰玲, 高金森, 徐春明. FCC提升管反应器中颗粒聚团对裂化反应的影响[J]. 化工学报, 2015, 66(8): 2920 -2928 .
[8] 王凯, 易诗婷, 周倩倩, 骆广生. 微通道内纳米颗粒对液滴聚并的影响规律[J]. 化工学报, 2016, 67(2): 469 -475 .
[9] 陈振涛, 徐春明. 重质油在孔道内扩散传质的研究进展[J]. 化工学报, 2016, 67(1): 165 -175 .
[10] 姚贵策, 苑昆鹏, 吴硕, 王照亮. 独立探头3ω法表征甲烷水合物热导率和热扩散率[J]. 化工学报, 2016, 67(5): 1665 -1672 .