化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1580-1587.doi: 10.11949/0438-1157.20190886
Zhirui BAI1(),Hongtao XU1(
),Zhiguo QU2,Jianfei ZHANG2,Yubo MIAO1
摘要:
搭建了套管式相变储热实验系统,分别填充不同质量分数膨胀石墨与正十五烷制备而成的复合相变材料,对系统进行重复充放冷循环实验。采用有效储热比Est和储能效率ε来表征系统性能,研究了复合相变材料中换热增强对套管式潜热储能系统放冷性能的影响。结果表明:同Re数下,相变材料热导率为0.14 W·m-1·K-1(工况A)放冷结束时间为1770 s,相同Re条件下热导率提升至7.10 W·m-1·K-1(工况B)和11.60 W·m-1·K-1(工况C)的结束时间分别可缩短77.3%、78.9%;热导率的增加可显著提高系统有效储热比Est和储能效率ε,热导率从0.14 W·m-1·K-1增加到11.60 W·m-1·K-1,Est在层流区、过渡区和湍流区分别可提升33.3%、350.0%及129.6%,ε分别可提升26.8%、52.9%及14.6%;Re的增加使得工况A和工况B中Est和ε呈现下降趋势,工况C中Est在Re=4298出现峰值1.62。
中图分类号:
1 | Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable Sustainable Energy Rev., 2009, 13(2): 318-345. |
2 | Mahdi J M, Lohrasbi S, Nsofor E C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. Int. J. Heat Mass Transfer, 2019, 137: 630-649. |
3 | Ding W, Bonk A, Gussone J, et al. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage[J]. J. Energy Storage, 2018, 15: 408-414. |
4 | 胡康, 徐飞, 陈磊, 等. 利用相变储热提升电力系统可再生能源消纳[J]. 工程热物理学报, 2018, 39(1): 1-7. |
Hu K, Xu F, Chen L, et al. Improve the integration of renewable energy sources into power system by the usage of phase-change heat storage[J]. J. Eng. Thermophys., 2018, 39(1): 1-7. | |
5 | Rahman A, Smith A D, Fumo N. Performance modeling and parametric study of a stratified water thermal storage tank[J]. Appl. Therm. Eng., 2016, 100: 668-679. |
6 | Tang J L, Ouyang Z R, Shi Y Y. Experimental analysis and FLUENT simulation of a stratified chilled water storage system[J]. Eur. Phys. J. Plus, 2019, 134(3): 118-126. |
7 | Nazir H, Batool M, Bolivar O F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. Int. J. Heat Mass Transfer, 2019, 129: 491-523. |
8 | Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable Sustainable Energy Rev., 2010, 14(2): 615-628. |
9 | Kalnæs S E, Jelle B P. Phase change materials and products for building applications: a state-of-the-art review and future research opportunities[J]. Energ. Buildings, 2015, 94: 150-176. |
10 | Su D, Jia Y, Alva G, et al. Comparative analyses on dynamic performances of photovoltaic-thermal solar collectors integrated with phase change materials[J]. Energy Convers. Manage., 2017, 131: 79-89. |
11 | Yau Y H, Rismanchi B. A review on cool thermal storage technologies and operating strategies[J]. Renewable Sustainable Energy Rev., 2012, 16(1): 787-797. |
12 | Bejarano G, Vargas M, Ortega M G, et al. Efficient simulation strategy for PCM-based cold-energy storage systems[J]. Appl. Therm. Eng., 2018, 139: 419-431. |
13 | Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable Sustainable Energy Rev., 2017, 74: 26-50. |
14 | Huang X, Alva G, Jia Y, et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable Sustainable Energy Rev., 2017, 72: 128-145. |
15 | Mahdi J M, Nsofor E C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Appl. Energ., 2018, 211: 975-986. |
16 | Yagci O K, Avci M, Aydin O. Melting and solidification of PCM in a tube-in-shell unit: effect of fin edge lengths ratio[J]. J. Energy Storage, 2019, 24: 100802. |
17 | Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Appl. Therm. Eng., 2018, 144: 721-725. |
18 | Qiu Z, Ma X, Li P, et al. Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications[J]. Renewable Sustainable Energy Rev., 2017, 77: 246-262. |
19 | Elbahjaoui R, El Qarnia H. Transient behavior analysis of the melting of nanoparticle-enhanced phase change material inside a rectangular latent heat storage unit[J]. Appl. Therm. Eng., 2017, 112: 720-738. |
20 | 陈华, 柳秀丽, 杨亚星, 等. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70: 86-92. |
Chen H, Liu X Y, Yang Y X, et al. Numerical simulation of foam metal copper/paraffin phase change thermal storage process[J]. CIESC Journal, 2019, 70: 86-92. | |
21 | 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297. |
Zhou S X, Zhang X L, Liu S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297. | |
22 | Yang X, Lu Z, Bai Q, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Appl. Energ., 2017, 202: 558-570. |
23 | Zhao J, Rao Z, Liu C, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. Int. J. Heat Mass Transfer, 2016, 99: 252-260. |
24 | Esapour M, Hamzehnezhad A, Rabienataj D A A, et al. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system[J]. Energy Convers. Manage., 2018, 171: 398-410. |
25 | Chen C, Zhang H, Gao X, et al. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM[J]. Energy Convers. Manage., 2016, 126: 889-897. |
26 | Tay N H S, Belusko M, Bruno F. An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems[J]. Appl. Energ., 2012, 91(1): 309-319. |
27 | Belusko M, Halawa E, Bruno F. Characterising PCM thermal storage systems using the effectiveness-NTU approach[J]. Int. J. Heat Mass Transfer, 2012, 55(13/14): 3359-3365. |
28 | Zhao D, Tan G. Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application[J]. Appl. Energ., 2015, 138: 381-392. |
29 | Fang Y, Niu J, Deng S. Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM[J]. Energ. Buildings, 2018, 160: 10-18. |
30 | Angelini G, Lucchini A, Manzolini G. Comparison of thermocline molten salt storage performances to commercial two-tank configuration[J]. Energ. Procedia, 2014, 49: 694-704. |
31 | Fang Y, Niu J, Deng S. An analytical technique for the optimal designs of tube-in-tank thermal energy storage systems using PCM[J]. Int. J. Heat Mass Transfer, 2019, 128: 849-859. |
[1] | 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596. |
[2] | 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888. |
[3] | 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501. |
[4] | 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827. |
[5] | 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034. |
[6] | 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071. |
[7] | 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408. |
[8] | 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601. |
[9] | 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870. |
[10] | 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396. |
[11] | 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227. |
[12] | 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243. |
[13] | 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249. |
[14] | 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368. |
[15] | 张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61. |
|