化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3645-3650.doi: 10.11949/0438-1157.20190850

• 综述与专论 • 上一篇    下一篇

催化剂微尺度结构与反应动力学

段学志(),陈文尧,周兴贵(),袁渭康   

  1. 华东理工大学化学工程联合国家重点实验室,上海 200237
  • 收稿日期:2019-07-24 修回日期:2019-08-13 出版日期:2019-10-05 发布日期:2019-08-17
  • 通讯作者: 周兴贵 E-mail:xzduan@ecust.edu.cn;xgzhou@ecust.edu.cn
  • 作者简介:段学志(1983—),男,博士,特聘教授,xzduan@ecust.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(21776077);上海市自然科学基金面上项目(17ZR1407300)

Microstructures and reaction kinetics of catalysts

Xuezhi DUAN(),Wenyao CHEN,Xinggui ZHOU(),Weikang YUAN   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2019-07-24 Revised:2019-08-13 Online:2019-10-05 Published:2019-08-17
  • Contact: Xinggui ZHOU E-mail:xzduan@ecust.edu.cn;xgzhou@ecust.edu.cn

摘要:

传统催化反应动力学研究主要关注宏观变量与性质(如温度和浓度敏感性),能用于指导工业反应器的优化设计,但极少关注催化剂微尺度结构与性质的影响,因而不能用于指导催化剂的优化设计。重点介绍了近年来发展的催化反应速率解析的方法,归纳总结了基于动力学分析的催化剂活性位的辨认方法,探讨了易实验测量的活化熵作为催化剂活性描述符的可能性,并阐明了炭载体表面化学性质对负载金属电子结构和催化性能的调变规律,将动力学分析方法的应用从反应器设计拓展到催化剂设计。

关键词: 反应动力学, 催化, 活性位辨认, 活性描述符, 优化设计

Abstract:

Traditional catalytic reaction kinetics studies focus on macroscopic variables and properties (such as temperature and concentration sensitivity) and can be used to guide the optimal design of industrial reactors, but pay little attention to the effects of catalyst microscale structures and properties. It cannot therefore be used to guide the optimal design of the catalyst. This review mainly discusses the development and application of multifaceted kinetics analysis method, which can discriminate the dominant active sites of supported metal catalysts, and the possibility to use the activation entropy (ΔS0*) as an experimentally measurable descriptor of catalytic reaction rate, which can be fine-tuned by tailoring the electronic properties of supported metal nanoparticles in terms of the surface chemistry and properties of carbon supports. It can extend the application of the kinetics analysis from the reactor design to the catalyst design.

Key words: reaction kinetics, catalysis, identification of active sites, descriptor, optimal design

中图分类号: 

  • TQ 138.2
1 ChorkendorffI, NiemantsverdrietJ W. Concepts of Modern Catalysis and Kinetics[M]. 3rd ed. Hoboken: Wiley-VCH, 2017.
2 MizunoN, MisonoM. Heterogeneous catalysis[J]. Chemical Reviews, 1998, 98(1): 199-218.
3 BellA T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691.
4 LevenspielO. Chemical reaction engineering[J]. Industrial & Engineering Chemistry Research, 1999, 38(11): 4140-4143.
5 KreutzerM T, KapteijnF, MoulijnJ A, et al. Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[J]. Chemical Engineering Science, 2005, 60(22): 5895-5916.
6 ArisR. On stability criteria of chemical reaction engineering[J]. Chemical Engineering Science, 1969, 24(1): 149-169.
7 LerouJ J, NgK M. Chemical reaction engineering: a multiscale approach to a multiobjective task[J]. Chemical Engineering Science, 1996, 51(10): 1595-1614.
8 MaoY, WangH F, HuP. Theory and applications of surface micro-kinetics in the rational design of catalysts using density functional theory calculations[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7(6): e1321.
9 MotagamwalaA H, BallM R, DumesicJ A. Microkinetic analysis and scaling relations for catalyst design[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 413-450.
10 NørskovJ K, BligaardT, RossmeislJ, et al. Towards the computational design of solid catalysts[J]. Nature Chemistry, 2009, 1(1): 37-46.
11 ChinY H, BudaC, NeurockM, et al. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters[J]. Journal of the American Chemical Society, 2011, 133(40): 15958-15978.
12 KulkarniA, SiahrostamiS, PatelA, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews, 2018, 118(5): 2302-2312.
13 BoudartM. From the century of the rate equation to the century of the rate constants: a revolution in catalytic kinetics and assisted catalyst design[J]. Catalysis Letters, 2000, 65(1/2/3): 1-3.
14 ChenW, JiJ, FengX, et al. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Journal of the American Chemical Society, 2014, 136(48): 16736-16739.
15 LimB, JiangM, CamargoP H, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932): 1302-1305.
16 WangC, DaimonH, OnoderaT, et al. A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen[J]. Angewandte Chemie International Edition, 2008, 47(19): 3588-3591.
17 van HardeveldR, HartogF. The statistics of surface atoms and surface sites on metal crystals[J]. Surface Science, 1969, 15(2): 189-230.
18 YanH, LinY, WuH, et al. Bottom-up precise synthesis of stable platinum dimers on graphene[J]. Nature Communications, 2017, 8(1): 1070.
19 ChenW, LiD, WangZ, et al. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst[J]. AIChE Journal, 2017, 63(1): 60-65.
20 FuW, ChenW, QianG, et al. Kinetics-assisted discrimination of active sites in Ru catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Reaction Chemistry & Engineering, 2019, 4(2): 316-322.
21 FengX, DuanX, QianG, et al. Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2[J]. Journal of Catalysis, 2014, 317: 99-104.
22 CaoY, FuW, SuiZ, et al. Kinetics insights and active sites discrimination of Pd-catalyzed selective hydrogenation of acetylene[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1888-1895.
23 PanM J, WangJ N, FuW Z, et al. Active sites of Pt/CNTs nanocatalysts for aerobic base-free oxidation of glycerol[J]. Green Energy & Environment, .
24 QuJ, CaoY, DuanX, et al. Eye-readable detection and oxidation of CO with Pt-based catalyst and binuclear rhodium complexes[J]. Angewandte Chemie, 2019, 58(35): 12258-12263.
25 DongC, LianC, HuS, et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles[J]. Nature Communications, 2018, 9(1): 1252.
26 WangY, TaoZ, WuB, et al. Shape-controlled synthesis of Pt particles and their catalytic performances in the n-hexadecane hydroconversion[J]. Catalysis Today, 2016, 259: 331-339.
27 ChenA, ChenP, CaoD, et al. Aqueous-phase reforming of the low-boiling fraction of bio-oil for hydrogen production: the size effect of Pt/Al2O3[J]. International Journal of Hydrogen Energy, 2015, 40(43): 14798-14805.
28 ChenW, LiD, PengC, et al. Mechanistic and kinetic insights into the Pt-Ru synergy during hydrogen generation from ammonia borane over PtRu/CNT nanocatalysts[J]. Journal of Catalysis, 2017, 356: 186-196.
29 ZhuX, GuoQ, SunY, et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity[J]. Nature Communications, 2019, 10(1): 1428.
30 GuoZ, ChenY, LiL, et al. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation[J]. Journal of Catalysis, 2010, 276(2): 314-326.
31 WangX, LiN, WebbJ A, et al. Effect of surface oxygen containing groups on the catalytic activity of multi-walled carbon nanotube supported Pt catalyst[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 21-30.
32 ChenW, JiJ, DuanX, et al. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Chemical Communications, 2014, 50(17): 2142-2144.
33 HanC, DuanX, ZhangM, et al. Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation[J]. Carbon, 2019, 153: 73-80.
34 ChenW, DuanX, QianG, et al. Carbon nanotubes as support in the platinum-catalyzed hydrolytic dehydrogenation of ammonia borane[J]. ChemSusChem, 2015, 8(17): 2927-2931.
35 ChenW, WangZ, DuanX, et al. Structural and kinetic insights into Pt/CNT catalysts during hydrogen generation from ammonia borane[J]. Chemical Engineering Science, 2018, 192: 1242-1251.
36 FuW, HanC, LiD, et al. Polyoxometalates-engineered hydrogen generation rate and durability of Pt/CNT catalysts from ammonia borane[J]. Journal of Energy Chemistry, 2020, 41: 142-148.
37 ZhangJ, ChenW, GeH, et al. Synergistic effects in atomic-layer-deposited PtCox/CNTs catalysts enhancing hydrolytic dehydrogenation of ammonia borane[J]. Applied Catalysis B: Environmental, 2018, 235: 256-263.
[1] 白佳杰, 梁丽彤, 张忠林, 李鹏, 杨景轩, 郝晓刚, 黄伟, 官国清. 基于CPD模型的低阶煤催化解聚过程模拟分析[J]. 化工学报, 2019, 70(S2): 265-274.
[2] 杨铃, 郑成, 李镇明. 微波协同离子液体催化合成柠檬酸三丁酯[J]. 化工学报, 2019, 70(S2): 287-293.
[3] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[4] 孟繁锐, 李伯阳, 李先春, 邱爽. K2CO3对兰炭催化气化特性的影响[J]. 化工学报, 2019, 70(S1): 99-109.
[5] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[6] 姜紫耀, 刘宗浩, 白姝, 史清洪. 聚合物接枝脂肪酶的合成及其对酶活的影响[J]. 化工学报, 2019, 70(9): 3473-3482.
[7] 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411.
[8] 张茜, 王艳华. 温控相分离纳米Ir催化αβ-不饱和醛、酮选择加氢[J]. 化工学报, 2019, 70(9): 3396-3403.
[9] 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863.
[10] 张泽, 程军, 仇亿, 郭浩, 杨卫娟, 刘建忠. 碱处理脱硅介孔分子筛催化脱氧断键制生物航油研究[J]. 化工学报, 2019, 70(8): 2919-2927.
[11] 陈东良, 张忠林, 杨景轩, 马旭莉, 李鹏, 郝晓刚, 官国清. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945.
[12] 于冬雪, 惠贺龙, 何京东, 李松庚. 塑料与蜡(重油)催化共热解相互作用研究[J]. 化工学报, 2019, 70(8): 2971-2980.
[13] 李萍, 李长明, 段正康, 高士秋, 许光文, 余剑. 低温烟气脱硝催化剂适用条件与动力学[J]. 化工学报, 2019, 70(8): 2981-2990.
[14] 刘阳, 刘捷成, 俞海淼, 陈德珍. 新型镍基镁渣催化重整松木热解挥发分焦油析出特性研究[J]. 化工学报, 2019, 70(8): 2991-2999.
[15] 陈潇雪, 宋敏, 孟凡跃, 卫月星. Fe x MnCe1-AC低温SCR催化剂SO2中毒机理研究[J]. 化工学报, 2019, 70(8): 3000-3010.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵淑珍,卢元铎,靳金荣. 二氧化铅电极的研制——PbO_2/掺Sb-SnO_2/Ti阳极 [J]. CIESC Journal, 1981, 32(2): 135 -140 .
[2] 李宽宏,董毅红. 垂直管道浸取器的流体力学研究 (Ⅰ)直管段的压力降 [J]. CIESC Journal, 1984, 35(4): 335 -343 .
[3] 尹春华, 刘江帆, 高明. 维生素E琥珀酸酯的酶促合成及优化 [J]. 化工学报, 2010, 61(4): 935 -941 .
[4] 张丹丹, 徐舜华, 刘智勇. 采用单一重组分代替复杂馏分模拟酮苯脱蜡溶剂回收过程 [J]. 化工学报, 2011, 62(2): 477 -481 .
[5] 侯朝鹏,夏国富,李明丰,聂红,李大东. F-T合成催化剂H2S中毒热力学和抗硫可行性预测 [J]. CIESC Journal, 2011, 62(3): 598 -603 .
[6] 胡万里,周理,余国琮. 刚性换热网络的弹性化 [J]. CIESC Journal, 1993, 44(1): 96 -102 .
[7] 郭占成,王大光,许志宏. 磷矿石熔融还原(Ⅰ)——磷酸盐还原实验研究 [J]. CIESC Journal, 1994, 45(3): 257 -264 .
[8] 姚素薇;莫敏;张卫国 .

Fe21Ni79合金纳米线阵列的制备与磁性

[J]. CIESC Journal, 2006, 57(6): 1453 -1457 .
[9] 胡朝发, 贾力. 脉动热管气液塞振荡运动模型 [J]. 化工学报, 2011, 62(S1): 113 -117 .
[10] 叶凌箭, 李英道, 宋执环. 一种构造化工过程被控变量的方法 [J]. 化工学报, 2011, 62(8): 2221 -2226 .