化工学报 ›› 2020, Vol. 71 ›› Issue (3): 983-996.doi: 10.11949/0438-1157.20190848

• 流体力学与传递现象 • 上一篇    下一篇

上倾管高黏油气两相流型及压降特性

李爽1,李玉星1(),王冬旭1,王权2   

  1. 1. 中国石油大学(华东)山东省油气储运安全省级重点实验室,山东 青岛 266580
    2. 中国市政工程中南设计研究总院有限公司,湖北 武汉 430060
  • 收稿日期:2019-07-20 修回日期:2019-10-14 出版日期:2020-03-05 发布日期:2019-10-25
  • 通讯作者: 李玉星 E-mail:lyx13370809333@163.com
  • 基金资助:
    国家自然科学基金面上项目(51774313)

Flow patterns and pressure drop characteristics on high-viscosity oil and gas two-phase flow in upward pipe

Shuang LI1,Yuxing LI1(),Dongxu WANG1,Quan WANG2   

  1. 1. Provincial Key Laboratory of Oil and Gas Storage and Transportation Security, China University of Petroleum, Qingdao 266580, Shandong, China
    2. Central and Southern China Municipal Engineering Design & Research Institute, Wuhan 430060, Hubei, China
  • Received:2019-07-20 Revised:2019-10-14 Online:2020-03-05 Published:2019-10-25
  • Contact: Yuxing LI E-mail:lyx13370809333@163.com

摘要:

利用室内实验装置,对上倾管内高黏油气两相流的流型和压降特性进行了实验研究。实验中观测到7种流型,得到了不同工况下的压力波动信号及压降值。实验结果表明,由于液相黏度的影响,上倾管内大部分流型的过渡边界向流型图的左侧偏移,且黏度越大偏移程度越大。将流型数据与Barnea流型判断模型进行对比,发现在高黏度时两者误差较大。根据压降数据得出,由于高黏度时液滴的附着作用增强,在气液表观速度均较小时,会出现黏度增加而压降却减小的现象。验证了OLGA模型和Zhang模型对于压降的计算精度,发现高黏度时模型的计算误差远大于低黏度情况。通过高黏度闭合关系式对Zhang模型进行修正,结果表明可以显著地提高其计算精度。

关键词: 气液两相流, 上倾管, 高黏油, 流型, 压降

Abstract:

Flow patterns and pressure drop characteristics on high-viscosity oil and gas two-phase flow in upward pipe were experimentally studied with an indoor experiment apparatus. Seven flow patterns were observed in the experiment. Pressure fluctuation signals and pressure drop values under different operating conditions were obtained. The results show that, due to the influence of liquid viscosity, the transition boundary of most flow patterns in the upward tube shifts to the left side of the flow pattern diagram, and the larger the viscosity is, the greater the migration degree is.The data of flow patterns were compared with Barnea model, whose error was found to be increased at higher viscosity. According to the pressure drop data, due to the boost of adhesion at higher viscosity, the phenomenon that the pressure drop decreases with the increase of liquid viscosity may occur during the lower superficial velocities. Comparison verification of pressure drop with OLGA model and Zhang model was performed, whose calculation error under high-viscosity was found to be greater than that of low-viscosity. Finally, the Zhang model was modified with the closure relationships for high-viscosity oil and the updated results showed that the accuracy can be significantly improved.

Key words: gas-liquid two-phase flow, upward pipe, high-viscosity oil, flow patterns, pressure drop

中图分类号: 

  • TQ 021.1

图1

实验装置"

图2

白油的黏温曲线"

图3

不同流型的特征"

图4

60°倾角下不同黏度流型图"

图5

不同黏度下的流型转换边界"

图6

流型实验数据与Barnea模型结果的对比"

图7

60°倾角时压降随表观速度的变化规律"

图9

压降随倾角的变化规律"

图8

压降随液相黏度的变化规律"

图10

压力梯度实测值与OLGA模型结果的对比"

图11

压力梯度实测值与Zhang模型结果的对比"

图12

压力梯度实测值与修正后的Zhang模型的对比"

表1

三种模型压力梯度计算结果的误差统计"

液相黏度/ (mPa·s) ε 1/% ε 2/(Pa·m-1)
OLGA模型 Zhang模型 修正后的Zhang模型 OLGA模型 Zhang模型 修正后的Zhang模型
1 12.96 14.66 27.49 420 473 909
80 19.79 18.32 18.76 676 631 786
314 38.15 46.55 16.15 2142 2718 889
606 39.79 50.10 14.59 2566 3518 1052
1 李玉星,冯叔初 .油气水多相管流[M].东营:中国石油大学出版社,2011:1.
Li Y X , Feng S C .Oil, Gas and Water Multiphase Flow in Pipelines[M].Dongying:China University of Petroluem Publication,2011:1.
2 罗小明,何利民,吕宇玲 .水平管气液两相段塞流的波动特性[J].化工学报,2008,59(11):2781-2786.
Luo X M , He L M , Lv Y L .Fluctuation characteristics of gas-liquid two-phase slug flow in horizontal pipeline[J].Journal of Chemical Industry and Engineering (China),2008,59(11):2781-2786.
3 王鑫,董传帅,张晓凌,等 .空气-水段塞流冷却传热与相界面分布实验研究[J].中国科学院大学学报,2017,34(2):232-236.
Wang X , Dong C S , Zhang X L ,et al .Investigation of heat transfer and interfacial distribution characteristic of air-water slug flow in cooling process[J].Journal of University of Chinese Academy of Sciences,2017,34(2):232-236.
4 何利民,郭烈锦,陈学俊 .测量水平管道液塞速度和长度的差压波动分析法[J].化工学报,2003,54(2):192-198.
He L M , Guo L J , Chen X J .Measurement of slug velocity and length in horizontal pipeline by means of differential pressure fluctuation analysis[J].Journal of Chemical Industry and Engineering (China),2003,54(2):192-198.
5 Zhao Y , Yeung H , Zorgani E E ,et al .High viscosity effects on characteristics of oil and gas two-phase flow in horizontal pipes[J].Chemical Engineering Science,2013,95:343-352.
6 Baba Y D , Aliyu A M , Archibong A E ,et al .Slug length for high viscosity oil-gas flow in horizontal pipes: experiments and prediction[J].Journal of Petroleum Science and Engineering,2018,165:397-411.
7 Nadler M , Mewes D .Effect of the liquid viscosity on the phase distribution in horizontal gas-liquid slug flow[J].International Journal of Multiphase Flow,1995,21(2):253-266.
8 Mata C , Pereyra E , Trallero J L ,et al .Stability of stratified gas-liquid flows[J].International Journal of Multiphase Flow,2002,28(8):1249-1268.
9 Matsubara H , Naito K .Effect of liquid viscosity on flow patterns of gas-liquid two-phase flow in a horizontal pipe[J].International Journal of Multiphase Flow,2011,37(10):1277-1281.
10 Foletti C , Farisè S , Grassi B ,et al .Experimental investigation on two-phase air/high-viscosity-oil flow in a horizontal pipe[J].Chemical Engineering Science,2011,66(23):5968-5975.
11 Furukawa T , Fukano T .Effects of liquid viscosity on flow patterns in vertical upward gas-liquid two-phase flow[J].International Journal of Multiphase Flow,2001,27(6):1109-1126.
12 Hlaing D N , Sirivat A , Siemanond K ,et al .Vertical two-phase flow regimes and pressure gradients: effect of viscosity[J].Experimental Thermal and Fluid Science,2007,31(6):567-577.
13 Al-Ruhaimani F , Pereyra E , Sarica C .Experimental analysis and model evaluation of high-liquid-viscosity two-phase upward vertical pipe flow[J].SPE Production & Operation,2017,22(3):712-735.
14 Colmenares J , Ortega P , Padrino J ,et al .Slug flow model for the prediction of pressure drop for high viscosity oils in a horizontal pipeline[C]//SPE International Thermal Operations and Heavy Oil Symposium.Venezuela,2001.
15 Kago T , Saruwatari T , Kashima M ,et al .Heat transfer in horizontal plug and slug flow for gas-liquid and gas-slurry systems[J].Journal of Chemical Engineering of Japan,1986,19(2):125-131.
16 Gokcal B .Effects of high oil viscosity on two-phase oil-gas flow behavior in horizontal pipes[D].Tulsa:The University of Tulsa,2005.
17 Gokcal B , Al-Sarkhi A , Sarica C ,et al .Prediction of slug frequency for high-viscosity oils in horizontal pipes[J].SPE Projects Facilities & Construction,2010,5(3):136-144.
18 Gokcal B , Al-Sarkhi A , Sarica C .Effects of high oil viscosity on drift velocity for horizontal and upward inclined pipes[J].SPE Projects,Facilities & Construction,2009,4(2):32-40.
19 Jeyachandra B C .Effects of pipe inclination on on flow characteristics of high viscosity oil-gas two-phase flow[D].Tulsa:The University of Tulsa,2011.
20 Jeyachandra B C , Gokcal B , Al-Sarkhi A ,et al .Drift-velocity closure relationships for slug two-phase high-viscosity oil flow in pipes[J].SPE Journal,2012,17(2):593-601.
21 Brito R , Pereyra E , Sarica C .Effect of medium oil viscosity on two-phase oil gas flow behavior in horizontal pipes[C]//Offshore Technology Conference.Houston,2013.
22 Rosa E S , Netto J .Viscosity effect and flow development in horizontal slug flows[C]//Yokohama: International Conference on Multiphase Flow,2004.
23 Al-Safran E M , Gokcal B , Sarica C .Investigation and prediction of high-viscosity liquid effect on two-phase slug length in horizontal pipelines[J].SPE Production & Operations,2013,28 (3):296-305.
24 Al-Safran E , Gokcal B , Sarica C .High viscosity liquid effect on two-phase slug length in horizontal pipes[C]//International Conference on Multiphase Production Technology.Cannes,2011.
25 Al-Safran E M .Probabilistic modeling of slug frequency in gas/liquid pipe flow using Poisson probability theory[J].Journal of Petroleum Science and Engineering,2016,138:88-96.
26 许晶禹,吴应湘,李东晖 .液相物性对气液两相管流流型和压降影响的研究[J].应用基础与工程科学学报,2005,13(2):111-119.
Xu J Y , Wu Y X , Li D H .The effects of liquid properties on flow pattern transition and pressure drop during gas-liquid pipe flow[J].Journal of Basic Science and Engineering,2005,13(2):111-119.
27 徐孝轩,刘德生,宫敬,等 .液相黏度对水平管气液两相流型的影响[J].油气储运,2013,32(3):236-240.
Xu X X , Liu D S , Gong J ,et al .The influence of liquid viscosity on gas-liquid two-phase flow in horizontal pipe[J].Oil and Gas Storage and Transportation,2013,32(3):236-240.
28 Baba Y D , Aliyu A M , Archibong A E ,et al .Study of high viscous multiphase phase flow in a horizontal pipe[J].Heat and Mass Transfer,2017,54(3):651-669.
29 McNeil D A , Stuart A D .The effects of a highly viscous liquid phase on vertically upward two-phase flow in a pipe[J].International Journal of Multiphase Flow,2003,29(9):1523-1549.
30 Spisak W , Idzik J .Gas hold-up in stalactite and slug flows with highly viscous liquids[J].The Chemical Engineering Journal,1994,56(1):79-85.
31 Barnea D .A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J].International Journal of Multiphase Flow,1987,13(1):1-12.
32 Zhang H Q , Wang Q , Sarica C ,et al .Unified model for gas-liquid pipe flowvia slug dynamics (Ⅰ): Model development[J].Journal of Energy Resources Technology,2003,125(4):266-273.
33 Kora C , Sarica C , Zhang H ,et al .Effects of high oil viscosity on slug liquid holdup in horizontal pipes[C]//Canadian Unconventional Resources Conference.Calagry,2011.
34 Wang S .High-viscosity oil/water/gas flow in horizontal and upward vertical pipes: slug liquid holdup modeling[D].Tulsa:The University of Tulsa,2012.
35 Zhao Y , Yeung H , Lao L .High liquid viscosity effects on wall and interfacial shear stresses in horizontal liquid-gas flows[C]//8th International Conference on Multiphase Flow.Jeju,2013:26-31.
36 Bendiksen K H .An experimental investigation of the motion of long bubbles in inclined tubes[J].International Journal of Multiphase Flow,1984,10(4):467-483.
37 Moreiras J , Pereyra E , Sarica C ,et al .Unified drift velocity closure relationship for large bubble rising in stagnant viscous fluids in pipes[J].Journal of Petroleum Science and Engineering,2014,124:359-366.
[1] 张亮亮, 付纪文, 罗勇, 孙宝昌, 邹海魁, 初广文, 陈建峰. 面向海洋工程的超重力过程强化技术及应用[J]. 化工学报, 2020, 71(1): 1-15.
[2] 陈宇超, 崔永晋, 王凯, 骆广生. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273.
[3] 贾文华, 田茂诚, 张冠敏, 魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[4] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[5] 田震, 成有为, 王丽军, 李希. 温度与压力对单孔气泡形成过程的影响[J]. 化工学报, 2019, 70(9): 3337-3345.
[6] 马旺宇, 罗正鸿. Geldart-B类颗粒在气固流化床中的床层膨胀与流型转变[J]. 化工学报, 2019, 70(7): 2472-2479.
[7] 刘宏臣, 周峰, 尧超群, 陈光文. 微反应器内CO2解吸过程流动行为及气提强化[J]. 化工学报, 2019, 70(7): 2448-2455.
[8] 周云龙, 常赫, 刘起超. 非线性振动下水平通道气液两相流动[J]. 化工学报, 2019, 70(7): 2512-2519.
[9] 周闻, 王康松, 鄂承林, 卢春喜. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573.
[10] 刘斌, 尤占平, 邓佳佳. 一维二氧化碳管道全孔破裂模型[J]. 化工学报, 2019, 70(6): 2174-2181.
[11] 曲江源, 齐娜娜, 关彦军, 滕阳, 徐文青, 朱廷钰, 张锴. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128.
[12] 吴君强, 蒋文明, 杜仕林, 刘杨. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741.
[13] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[14] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
[15] 程洁, 郭亚军, 王腾, 桂淼, 刘朝辉, 随志强. γ射线法测量高压管束间气液两相流的截面含气率分布[J]. 化工学报, 2019, 70(4): 1375-1382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈五花, 赵宗昌. 原油中石蜡沉积的热力学模型[J]. CIESC Journal, 2006, 14(5): 685 -689 .
[2] Gul-e-Rana JAFFRI, 张济宇. Investigation on Steam Gasification of High-metamorphous Anthracite Using Mixed Black Liquor and Calcium Catalyst[J]. CIESC Journal, 2008, 16(4): 575 -583 .
[3] Bal Raj Deshwal, Anu Sharma, Krishan Chander Singh. Speeds of Sound and Excess Isentropic Compressibilities of Butyl Acetate+Aromatic Hydrocarbons[J]. CIESC Journal, 2008, 16(4): 599 -604 .
[4] 肖新颜, 刘健飞. Synthesis and Characterization of Fluorine-containing Polyacrylate Emulsion with Core-Shell Structure[J]. CIESC Journal, 2008, 16(4): 626 -630 .
[5] 吕阳成, 林泉, 骆广生, 戴猷元. Solubility of Emodin in Alcohols[J]. CIESC Journal, 2009, 17(2): 251 -253 .
[6] 朱爱梅, 张新波, 刘庆林, 张秋根. A Fully Flexible Potential Model for Carbon Dioxide[J]. CIESC Journal, 2009, 17(2): 268 -272 .
[7] 徐泽辉, 夏蓉晖, 郭世卓, 范存良, 房鼎业. Improvement of Isomerization Process of Crude Isoamylene with Tertiary-amyl-alcohol Addition[J]. CIESC Journal, 2009, 17(5): 761 -766 .
[8] 高继贤, 王铁峰, 舒庆, 山尼, 温倩, 王德峥, 王金福. An Adsorption Kinetic Model for Sulfur Dioxide Adsorption by ZL50 Activated Carbon[J]. CIESC Journal, 2010, 18(2): 223 -230 .
[9] 乔燕, 邸志国, 马友光, 马沛生, 夏淑倩. Viscosities of Pure Water,Acetic Acid+Water,and p-Xylene+Acetic Acid+Water at Different Temperature and Pressure[J]. CIESC Journal, 2010, 18(3): 446 -454 .
[10] Meisam Hafizi, Hossein Abolghasemi, Morteza Moradi, Saeed Alamdar Milani. Strontium Adsorption from Sulfuric Acid Solution by Dowex 50W-X Resins[J]. CIESC Journal, 2011, 19(2): 267 -272 .