化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1174-1188.doi: 10.11949/0438-1157.20190840

• 过程系统工程 • 上一篇    下一篇

BGL炉煤气化过程建模和模拟

李英泽(),杨路,王琦,杨思宇()   

  1. 华南理工大学化学与化工学院,广东 广州 510000
  • 收稿日期:2019-07-23 修回日期:2019-09-10 出版日期:2020-03-05 发布日期:2019-09-12
  • 通讯作者: 杨思宇 E-mail:ceyingzelee@mail.scut.edu.cn;cesyyang@scut.edu.cn
  • 作者简介:李英泽(1996—),男,硕士研究生,ceyingzelee@mail.scut.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(21736004)

Modeling and simulation of gasification process in BGL furnace

Yingze LI(),Lu YANG,Qi WANG,Siyu YANG()   

  1. College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510000, Guangdong, China
  • Received:2019-07-23 Revised:2019-09-10 Online:2020-03-05 Published:2019-09-12
  • Contact: Siyu YANG E-mail:ceyingzelee@mail.scut.edu.cn;cesyyang@scut.edu.cn

摘要:

建立了BGL气化炉的三维非稳态煤气化模型,模型考虑煤炭颗粒的收缩过程,应用收缩核模型集成煤热解模型、气相湍流模型、气固流动模型、气固异相反应模型、气相均相反应模型、能量守恒方程以及相间传热模型等。该模型充分考虑了气化炉内部三维空间的温度和组成分布,通过煤热解段模型化学计量参数优化,得到CO/H2摩尔比在1.59左右,符合BGL炉热解段运行机制;然后对BGL炉气化段过程进行三维非稳态模拟,模拟出口气组成(CO,H2,CO2,CH4,H2O,O2)与文献结果对比,误差均小于4%。证明了BGL模型的准确性。基于该模型,本文对煤气化过程的主要参数进行影响分析。分析结果表明:煤气化效率随汽氧比的增加而提高,当汽氧比确定在1~1.3之间可以满足工艺要求及生产的需要,适合本文研究所用褐煤的特点;氧煤比增加会降低煤气化效率,但合成气中有效气的含量呈现出先增大后减小的趋势,当氧煤比在0.17左右时有效气含量达到峰值;随着煤粒直径的增加,BGL炉内的温度呈降低趋势,最高温度从2536.77 K降到了2047.81 K;同时,煤粒直径增加会减小CO、H2和CH4的生成量,并增大CO2的生成量。

关键词: BGL炉, 煤热解化学计量参数优化, 动态建模, 汽氧比, 氧煤比, 气化效率, 颗粒物料

Abstract:

A three-dimensional unsteady coal gasification model of BGL gasifier is established in this paper. The model considers the shrinkage process of coal particles, the coal core pyrolysis model, gas phase turbulence model, gas-solid flow model, gas-solid heterogeneous reaction model, gas phase homogeneous reaction model, energy conservation equation and phase-to-phase heat transfer model. This model fully considers the temperature and composition distribution of the three-dimensional space inside the gasifier. Through the optimization of the stoichiometric parameters of the coal pyrolysis section model, the CO/H2 molar ratio is about 1.59, which is consistent with the BGL furnace pyrolysis section operating mechanism; The three-dimensional unsteady simulation of the gasification section of the gasifier is used to simulate the composition of the outlet gas (CO, H2, CO2, CH4, H2O, O2) compared with the literature results, and the error is less than 4%, which proves the accuracy of the BGL model. Based on this model, we analyze the main parameters of the coal gasification process in this paper. The results show that the coal gasification efficiency increases with the increase of steam-oxygen ratio. When the steam-oxygen ratio is determined to be between 1—1.3, it can meet the process and production requirements, which is suitable for the characteristics of lignite used in this paper; the coal gasification efficiency will decrease with the increase of oxygen-coal ratio, but the content of effective gas in syngas shows a trend of increasing first and then decreasing. When the oxygen-coal ratio is around 0.17, the effective gas content will reach a peak value. With the increase of coal particle diameter, the temperature in BGL furnace decreases, the maximum temperature is dropping from 2536.77 K to 2047.81 K; as for the composition, the increase of coal particle diameter will reduce the production of CO, H2 and CH4, and increase the amount of CO2.

Key words: BGL furnace, optimization of coal pyrolysis stoichiometry, dynamic modeling, steam-oxygen ratio, oxygen-coal ratio, gasification efficiency, granular materials

中图分类号: 

  • TQ 021.8

图1

BGL炉与Lurgi炉结构"

表1

国外各主要机理模型的比较"

模型 模型类型 干燥和干馏区 气化和燃烧区
UD/MIT模型 (1)Yoon et al, 1977,1978,1979(零维,稳态,均相)

瞬时;假定产物组分近似分析得到

SP或AS模型,C+H2O和C+O2反应,内扩散和本征反应速率;C+O2和C+H2反应,本征反应速率;

C+H2O反应,平衡处理;忽略不计H2和CO的气相燃烧

(2)Debb et al, 1979(一维,稳态,均相)

瞬时;假定产物组分近似分析得到

(3)Yu et al, 1981,1982,1983(二维,稳态,均相)

瞬时;假定产物组分近似分析得到

(4)Ghani et al, 1995,1996(一维,稳态,均相) 建立发展了干燥和脱挥发分的子模型,但不能满足水蒸气的边界条件
WVU模型 (1)Desai and Wen,1975,1978(一维,稳态,均相)

瞬时;假定产物分布,由实验修正

SP模型,C+H2O反应,扩散和本征反应速率;C+O2、C+H2、C+O2及CO+H2O反应,本征反应速率
(2)Wen et al, 1982(一维,稳态,均相) 假定产物分布;考虑产量,焦油的裂化及沉积动力学 SP模型,CO+H2O反应,扩散;C+O2、C+H2及C+CO2反应,本征反应速率;CO+H2O反应,本征反应速率,考虑H2氧化动力学
(3)Monazam, 1986(一维,稳态,非均相)

无报道

SP模型,反应由膜层、灰层扩散及动力学决定;C+H2O反应,平衡处理
METC模型 (1)Stefano et al,1985(零维,稳态,均相)

假定产量和分布

平衡反应,C+O2反应,根据经验进行O2化学计量计算;CO+H2O反应,平衡反应,根据经验进行焦油化学计量计算
(2)Syamlal, 1991(二维,瞬时,非均相) 焦油的裂化动力学,假定产物产量和分布 SP模型,本征反应速率;C+O2反应,由膜层、灰层扩散;CO+H2O反应,反应动力学

表2

国内各主要机理模型的比较"

模型 假设 反应处理 传热处理及参数选取

项友谦[18](一维,稳态,均相)

灰层、反应层、干燥层、预热层;活塞流动;同一截面上的浓度、温度轴向速度视为相等; 反应器内压力视为常数;气化段内只有气化和燃烧

收缩反应核;C+O2反应,扩散和化学反应常数(平衡处理);C+H2O、C+CO2及C+H2反应,本征反应速率和孔扩散速率

氧化反应时,固相传热给气相,而在还原、干馏和干燥时,则气相传热给固相。气固换热有对流和辐射传热;高温,辐射传热起主要作用
袁渭康等[19](一维,稳态,均相)

不考虑边界层影响,只有绝热区。气固等温;忽略气体返混

收缩反应核(AS、SP 模型);C+O2反应,λ=1.33;C+H2O、C+CO2及C+H2反应,本征反应速率;CO+H2O反应,平衡反应

气固等温,炉子为绝热

王光德等[20](一维,稳态,非均相)

气固相的流型是活塞流;忽略反应器径向的非均一性;忽略反应器内压力降

收缩反应核(AS、SP模型);C+O2、 C+H2O、C+CO2、C+H2反应,本征反应速率和孔扩散速率;干馏干燥瞬时化 忽略辐射传热。由于忽略辐射传热,则传热系数由Chilton-Colburn相似性导出求解
张乙明等[21]

气流均匀,料层均匀下降,气流无纵向传质,无横向混合

C+O2反应,气膜扩散;C+H2O、C+CO2反应,本征反应速率和孔扩散速率;C+H2反应,本征反应速率;CO+H2O反应,瞬间平衡;干馏干燥反应,本征反应速率

忽略气固间辐射传热及固间传热。气固间传热系数采用经验公式

图2

BGL炉气化过程及建模"

表3

实验所得产物质量组成"

CH4 C2H6 CO CO2 H2 H2O C6H6O C7H8 C7H10 C14H10
4.39 0.76 55.8 21.9 2.50 1.90 1.91 1.79 3.95 5.05

表4

工业和元素分析"

水分 灰分 挥发分 固定碳
35.4 15.8 22.4 26.4 71.7 4.5 20.9 1.2 1.6

表5

热解产物体积组成"

CS CH4 C2H6 CO CO2 H2 H2O NH3 H2S N2 COS HCN C6H6O C7H8 C7H10 C14H10
71.59 1.81 0.17 13.16 3.29 8.25 0.70 0.20 0.17 0.03 0.07 0.03 0.13 0.13 0.28 0.005

表6

气体均相反应动力学参数"

反应

频率因子Ai /

(m3/(kmol·s))

活化能Ei /(kJ/kmol)
H2+0.5O2 H2O 8.83×108 9.976×104
CO+0.5O2 CO2 3.09×105 9.976×104
CH4+H2OCO+H2 3×108 1.25×105
CO+H2OCO2+H2 2.75×109 8.37×104
CH4+0.5O2 CO+2H2 4.4×1011 1.25×105

表7

气化用褐煤工业及元素分析"

水分 灰分 挥发分 固定碳
35.4 15.8 22.4 26.4 35 2.2 10.2 0.6 0.8

表8

BGL炉气化段出口气体积组成对比"

CO H2 CO2 CH4 H2O O2
文献值 66.1 26.1 3.7 0.4 3.6 0.1
模拟值 62.31 27.99 5.3 0.38 3.64 0.37
绝对误差 3.79 1.89 1.6 0.02 0.04 0.27

图3

BGL炉气化段过程高度与温度的关系"

图4

汽氧比对煤气化出口气组成的影响"

图5

汽氧比对气化段出口气温度的影响"

图6

氧煤比对煤气化出口气组成的影响"

图7

氧煤比对煤气化出口气温度的影响"

图8

煤粒平均直径对BGL炉内温度的影响"

图9

煤粒平均直径对煤气化出口气组成的影响"

图10

效率随汽氧比变化趋势"

图11

焓随汽氧比变化趋势"

图12

效率随氧煤比变化趋势"

图13

焓随氧煤比变化趋势"

1 王玉忠 . 利用褐煤鲁奇炉与BGL炉碎煤加压气化工艺模拟研究[J]. 化工管理, 2018, 2(2): 93-100.
Wang Y Z . Simulation study on pressurized gasification process of lignite with lignite Lurgi furnace and BGL furnace[J]. Chemical Enterprise Management, 2018, 2(2): 93-100.
2 Anthony D B , Howard J B . Coal devolatilization and hydrogasification[J]. AIChE J., 1976, 22(4): 625-656.
3 Howard J B . Chemistry of Coal Utilization: Second Supplementary Volume[M]. New York: John Wiley & Sons Inc, 1981:665.
4 Smoot L D . Fossil Fuel Combustion: A Source Book[M]. New York: John Wiley & Sons Inc, 1991:653.
5 傅维标, 张燕屏, 韩洪樵, 等 . 煤热解通用模型(Fu-Zhang模型)[J]. 中国科学( A辑), 1988, 12(4): 1283-1290.
Fu W B , Zhang Y P , Han H Q , et al . General model of coal particle pyrolysis (Fu-Zhang model) [J]. Sci. China Ser.A, 1988, 12(4): 1283-1290.
6 王国金, 李术元, 王剑秋, 等 . 煤颗粒脱挥发份的数学模型研究[J]. 燃料化学学报, 1996, 24(2): 181-185.
Wang G J , Li S Y , Wang J Q , et al . Study on mathematical model of devolatilization of coal particles[J]. J. Fuel Chem. Techno., 1996, 24(2): 181-185.
7 田红, 蔡九菊, 王爱华, 等 . 固定床煤气化过程机理模型综述[J]. 工业加热, 2005, 34(2): 1-4.
Tian H , Cai J J , Wang A H , et al . Summarization on mechanism models of fixed bed coal gasification[J]. Ind. Heat., 2005, 34(2): 1-4.
8 Yoon H , Wei J , Denn M M , et al . A model for moving-bed coal gasification reactors[J]. AIChE J., 1978, 24(5): 885-903.
9 Yoon H , Wei J , Denn M M , et al . Transient behavior of moving bed coal gasification reactors[J]. AIChE J., 1979, 25(3): 429-439.
10 Yu W C , Denn M M , Wei J . Radial effects in moving bed coal gasifiers[J]. Chem. Eng. Sci., 1983, 38(9): 1467-1481.
11 Desai P , Wen C . Computer modeling of the mere fixed bed gasifier[C]//3th Conference Report of Morgantown Energy Research Center. Morgantown, WV: U.
Department of Energy S. , 1978, 101-132.
12 Desai P . Comparison of processes generating electricity from coal via low BTU gas production [D]. West Virginia University, 1975: 1-25.
13 Syamlal M . METC gasifier advanced simulation model[R].
Topical Report for the U . S. Department of Energy. Morgantown, WV: Morgantown Energy Techno. Center, 1921.
14 彭伟峰, 钟伟民, 程辉, 等 . 水煤浆气化装置水洗过程的建模与优化[J]. 计算机与应用化学, 2011, 28(12):1515-1520.
Peng W F , Zhong W M , Cheng H , et al . Modeling and optimization of scrubbing process of coal-water slurry gasification plant[J]. Computers and Applied Chemistry, 2011, 28(12):1515-1520.
15 郭威, 钟伟民 . 德士古气化炉气化反应过程的数值模拟与特性分析[J]. 华东理工大学学报(自然科学版), 2018, 44(2): 155-161.
Guo W , Zhong W M . Numerical simulation and characteristic analysis of the gasification process for a Texaco gasifier[J]. Journal of East China University of Science and Technology (Nature Science Edition), 2018, 44(2): 155-161.
16 李小刚, 李智, 钟伟民, 等 . 不同H/C比煤质对水煤浆气化过程的影响分析[J]. 计算机与应用化学, 2016, 33(1): 27-32.
Li X G , Li Z , Zhong W M , et al . Analysis on the effect of coal quality with different H/C ratio on coal-water slurry gasification process[J]. Computers and Applied Chemistry, 2016, 33(1): 27-32.
17 陈金花, 孔祥东, 胡贵华, 等 . 中心氧配比对GE气化炉内冷态流场分布影响的数值模拟研究[J]. 计算机与应用化学, 2015, 32(1): 15-19.
Chen J H , Kong X D , Hu G H , et al . Numerical simulation analysis on the effect of the center oxygen ratio on the GE gasification process[J]. Computers and Applied Chemistry, 2015, 32(1): 15-19.
18 项友谦 . 固定燃料加压气化过程的分析与模拟[J]. 煤气与热力, 1987, 7(1): 3-12.
Xiang Y Q . Analysis and simulation of pressurized gasification process of fixed fuel[J]. Gas & Heat, 1987, 7(1): 3-12.
19 袁渭康, 韦潜光 . 移动床煤气化器的一维模型性能研究[J]. 化工学报, 1984, 35(4): 320-327.
Yuan W K , Wei Q G . The performance of moving bed coal gasifiers under one-dimensional modeling[J]. Journal of Chemical Industry and Engineering(China), 1984,35(4): 320-327.
20 王光德, 沙兴中, 任德庆 . 加压移动床煤气化反应器的数学模型[J]. 煤气与热力, 1993, (2): 14-27.
Wang G D , Sha X Z , Ren D Q . Pressured moving-bed coal gasification modeling[J]. Gas & Heat, 1993, (2): 14-27.
21 张乙明, 宋耑 . 两段式发生炉气化过程的模拟计算[J]. 煤气与热力, 1989, (2): 7-15.
Zhang Y M , Song D . Computer simulation of coal gasification process of two-stage gasifier[J]. Gas & Heat, 1989, (2): 7-15.
22 张健 . 褐煤流化床气化特性与动力学研究[D]. 北京: 华北电力大学, 2017.
Zhang J . Gasification characteristics and kinetic of lignite in a fluidized bed gasifier[D]. Beijing: North China Electric Power University, 2017.
23 陈家仁 . 流化床气化的过去现在与将来[J]. 洁净煤技术, 1998, 4(1): 8-10.
Chen J R . The development of fluidized bed coal gasification[J]. Clean Coal Tech., 1998, 4(1): 8-10.
24 He C , F X, Chu K H . Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant[J]. Applied Energy, 2013, 111(11):742-757.
25 秦丽娜, 李建伟, 周安宁 . 煤热解动力学模型的建立[J]. 洁净煤技术, 2013, 19(1): 98-102.
Qin L N , Li J W , Zhou A N . Establishment of dynamics model for coal pyrolysis[J]. Clean Coal Tech., 2013, 19(1):98-102.
26 Launder B E , Spalding D B . Lectures in Mathematical Models of Turbulence[M]. London: Academic Press, 1972.
27 Spalding D B . A two-equation model of turbulence[J]. VDI-Forshung-sheft, 1972, (549): 5-16.
28 王福军 . 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 120-132.
Wang F J . Computational Fluid Dynamics Analysis: Principles and Applications of CFD Software[M]. Beijing: Tsinghua University Press, 2004: 120-132.
29 Jones W P , Launder B E . The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence[J]. Int. J. Heat Mass Transfer, 1973, 16(6): 1119-1130.
30 Daly B J , Harlow F H . Transport equations in turbulence[J]. Phys. Fluids, 1970, 13: 2634-2649.
31 张夜雨 . 干煤粉加压气化反应实验及模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
Zhang Y Y . Experiment and simulation for pulverized coal gasification under pressure[D]. Harbin: Harbin Institute of Technology, 2010.
32 董涛 . 粉煤气化炉数值模拟及性能优化分析[D]. 郑州: 郑州大学, 2016.
Dong T . Numerical simulation and performance optimization of pulverized coal gasifier[D]. Zhengzhou: Zhengzhou University, 2016.
33 徐振刚, 刘国海, 于涌年 . 煤催化气化反应的收缩核模型[J]. 化工学报, 1988, 39(4): 488-494.
Xu Z G , Liu G H , Yu Y N . Shrinking unreacted-core model for catalytic steam gasification of Jiaozuo anthracite[J]. Journal of Chemical Industry and Engineering(China), 1988, 39(4): 488-494.
34 吴俣, 周传波, 李乾军 . 温度对喷动流化床煤气化影响的数值模拟[J]. 能源研究与利用, 2009, (4): 21-25.
Wu Y , Zhou C B , Li Q J . Numerical simulation of influence of temperature on coal gasification process in pressurized spouted fluidized bed[J]. Energy Research & Utilization, 2009, (4): 21-25.
35 周山明, 金保升 . 加压喷动流化床煤部分气化数值模型[J]. 煤炭转化, 2000, 23(2): 59-66.
Zhou S M , Jin B S . A numerical model for pressurized fluidized bed coal gasifier[J]. Coal Conversion, 2000, 23(2): 59-66.
36 邓中乙, 肖睿, 金保升, 等 . 加压喷动流化床煤气化数值模拟[J]. 燃料科学与技术, 2009, 15(4): 332-338.
Deng Z Y , Xiao R , Jin B S , et al . Numerical simulation of coal gasification in pressurized spout fluid bed[J]. J. Combust. Sci. Technol., 2009, 15(4): 332-338.
37 许宏鹏 . 煤气化过程的数值模拟和热力学第二定律评价[D]. 武汉: 华中科技大学, 2016.
Xu H P . Computation fluid dynamics and second law of thermodynamics analysis for coal gasification[D]. Wuhan: Huazhong University of Science and Technology, 2016.
38 管蕾 . 激冷式气流床粉煤气化炉模拟研究[D]. 上海: 华东理工大学, 2016.
Guan L . Simulation of quench-cooling entrained-flow pulverized coal gasifier[D]. Shanghai: East China University of Science and Technology, 2016.
39 赵冬, 冯霄, 王东亮 . 煤制天然气过程模拟与分析[J]. 化工进展, 2015, 34(4): 990-996.
Zhao D , Feng X , Wang D L . Simulation and exergy analysis of coal to SNG process[J]. Chem. Ind. & Eng. Pro., 2015, 34(4): 990-996.
40 杨小丽, 于戈文, 程文伟, 等 . 干粉煤气化过程的分析及其影响因素研究[J]. 化学工程, 2018, 46(10): 63-68.
Yang X L , Yu G W , Chen W W , et al . Exergy analysis of pulverized coal gasification and study on the influence factors[J]. Chemical Engineering(China), 2018, 46(10): 63-68.
41 Patrick J W , Walker A , Hanson S . The effect coal particle size on pyrolysis and steam gasification[J]. Fuel, 2002, 81(5): 531-537.
42 霍威, 钟思青 . 不同粒径褐煤的热解特性及煤焦结构[J]. 煤炭转化, 2017, 40(1): 8-12.
Huo W , Zhong S Q . Pyrolysis characteristic and char structures of lignite with different particle sizes[J]. Coal Conversion, 2017, 40(1): 8-12.
[1] 乔俊飞, 贺增增, 杜胜利. 基于混合评价指标的自组织模糊神经网络设计研究[J]. 化工学报, 2019, 70(7): 2606-2615.
[2] 黄秀辉, 王俊, 崔国民. PTA装置醋酸脱水塔的动态模拟及控制策略分析[J]. 化工学报, 2019, 70(2): 625-633.
[3] 李文静, 李萌, 乔俊飞. 基于互信息和自组织RBF神经网络的出水BOD软测量方法[J]. 化工学报, 2019, 70(2): 687-695.
[4] 王通, 段泽文. 基于模糊评估自适应更新的油井动液面软测量建模[J]. 化工学报, 2019, 70(12): 4760-4769.
[5] 姜乐,周平. 优化增量型随机权神经网络及应用[J]. 化工学报, 2019, 70(12): 4710-4721.
[6] 张承全, 高军, 吕立鹏, 贺廉洁. 单一尺寸圆柱颗粒填充床的阻力特性[J]. 化工学报, 2019, 70(11): 4181-4190.
[7] 杜占. 颗粒表面金属铁析出规律的热力学研究[J]. 化工学报, 2019, 70(11): 4143-4152.
[8] 鲁浩天, 陈怡沁, 周静红, 隋志军, 周兴贵. 电化学双电层电容器动态模拟:离子尺寸及扩散系数的优化[J]. 化工学报, 2019, 70(10): 4021-4031.
[9] 乔俊飞, 马士杰, 杨翠丽. 基于ROLS算法的递归RBF神经网络结构设计[J]. 化工学报, 2018, 69(3): 1191-1199.
[10] 李泽龙, 杨春节, 刘文辉, 周恒, 李宇轩. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997.
[11] 范小强, 韩国栋, 黄正梁, 孙婧元, 王靖岱, 阳永荣, 吴文清, 谢磊. 气相法聚乙烯工艺冷凝态操作模式的稳定性和动态行为[J]. 化工学报, 2018, 69(2): 779-791.
[12] 辜小花, 张堃, 王甜, 候松, 宋鸿飞, 李太福, 邱奎. 基于CW-HCA联合指标的高含硫天然气净化过程故障监测[J]. 化工学报, 2018, 69(10): 4292-4301.
[13] 李亚宁, 王学雷, 谭杰, 刘承宝, 白熹微. 焦化换向过程烟气脱硝扰动建模与前馈控制[J]. 化工学报, 2017, 68(8): 3168-3176.
[14] 蒋昕祎, 杜红彬, 李绍军. 基于核慢特征回归与互信息的常压塔软测量建模[J]. 化工学报, 2017, 68(5): 1977-1986.
[15] 张东, 李金平, 张涵. 基于沼气的热电气联供系统全工况模型与性能分析[J]. 化工学报, 2017, 68(5): 1998-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 间甲酚研究组. 邻二甲苯液相氧化动力学的研究 [J]. CIESC Journal, 1982, 33(1): 65 -76 .
[2] 张涛, 黄哲, 林章凛. 固定化β-葡萄糖苷酶双相体系中水解大豆异黄酮 [J]. 化工学报, 2008, 59(2): 387 -392 .
[3] 廖强;朱寿礼;朱恂.

生物膜填料床内含有生化反应的多相传输模型

[J]. CIESC Journal, 2005, 56(9): 1743 -1749 .
[4] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[5] 刘永建;刘春天;程显彪.

噻吩水热裂解平衡计算及反应过程分析

[J]. CIESC Journal, 2005, 56(1): 6 -10 .
[6] 刘莉;由世俊;张欢 .

考虑地面积尘时置换通风的数值模拟

[J]. CIESC Journal, 2006, 57(1): 155 -159 .
[7] 章寿华,高勇,谷桂馨,朱民. 用光散射技术测量单个气溶胶微滴 [J]. CIESC Journal, 1992, 43(3): 323 -329 .
[8] 刘志平, 黄世萍, 汪文川. 分子计算科学——化学工程新的生长点 [J]. 化工学报, 2003, 54(4): 464 -476 .
[9] 李 芳1,2,崔红梅1,2,吕炳南3. 生物转盘同步去除化学需氧量和氮的实验研究[J]. 化工进展, 2012, 31(07): 1615 -1619 .
[10] 王建国, 李松, 黄俊峰, 李红延. 电磁场对换热表面CaCO3结垢行为及其形态影响的实验研究[J]. 化工学报, 2013, 64(10): 3708 -3713 .