化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1588-1596.doi: 10.11949/0438-1157.20190837

• 流体力学与传递现象 • 上一篇    下一篇

水平管内R245fa/R141b沸腾换热特性的实验研究

王志奇(),贺妮,罗兰,夏小霞,左青松   

  1. 湘潭大学机械工程学院,湖南 湘潭 411105
  • 收稿日期:2019-07-22 修回日期:2019-10-13 出版日期:2020-04-05 发布日期:2019-11-02
  • 通讯作者: 王志奇 E-mail:wangzhiqi@xtu.edu.cn
  • 作者简介:王志奇(1979—),男,博士,副教授,wangzhiqi@xtu.edu.cn
  • 基金资助:
    湖南省自然科学基金项目(2018JJ2399);西藏科技厅重大专项(XZ201801-GA-03)

Experimental investigation on flow boiling heat transfer of R245fa/R141b in horizontal smooth tube

Zhiqi WANG(),Ni HE,Lan LUO,Xiaoxia XIA,Qingsong ZUO   

  1. College of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
  • Received:2019-07-22 Revised:2019-10-13 Online:2020-04-05 Published:2019-11-02
  • Contact: Zhiqi WANG E-mail:wangzhiqi@xtu.edu.cn

摘要:

针对新型混合工质R245fa/R141b,开展水平光滑管(外径10 mm)内工质沸腾换热特性的实验研究,对比纯工质与混合工质的换热性能及4种常用关联式的预测精度。结果表明:纯工质与混合工质的沸腾传热系数均随质量流速和热通量的增加而增大,随饱和压力的增加而减小;随干度的增加,沸腾传热系数均先增大后减小,即存在“过渡干度”,且混合工质的过渡干度大于纯工质;干度小于0.55时,混合工质传热系数小于纯工质;干度大于0.55后,混合工质的传热系数更高;随R245fa质量分数的增加,混合工质的沸腾传热系数增大。在所选关联式中,Gungor-Winterton关联式能准确地预测工质在光滑管内的沸腾换热特性,平均相对误差为16.67%。

关键词: 水平光滑管, 二元混合物, 相变, 关联式, 传热

Abstract:

An experimental investigation on the boiling heat transfer of a new mixture R245fa/R141 in a 10 mm horizontal smooth tube was conducted. The boiling heat transfer performances of R245fa, R141b and their mixture were investigated, and the prediction accuracy of four commonly used correlations was compared. The results show that the boiling heat transfer coefficients of pure and mixture increase with the increase of mass flow rate and heat flux, and decrease with the increase of saturation pressure. Besides, the boiling heat transfer coefficient of working fluids increases first and then decreases with the increase of vapor quality, which indicates that there is transitional vapor quality. What s more, the value of transitional vapor quality of R245fa/R141b is greater than that of R245fa and R141b. When the vapor quality is less than 0.55, the heat transfer coefficient of the mixture is lower than that of the pure working fluid. On the contrary, when the vapor quality is greater than 0.55, R245fa/R141b can achieve a higher heat transfer coefficient. The boiling heat transfer coefficient of R245fa/R141b increases with the increase of R245fa mass fraction. Among several selected correlations, the Gungor-Winterton correlation can predict the boiling heat transfer coefficient more accurately, and the average absolute error is 16.67%.

Key words: horizontal smooth tube, binary mixture, phase change, prediction correlation, heat transfer

中图分类号: 

  • TK 124

图1

水平管内流动沸腾特性实验系统流程图1—立式多级离心泵;2—干燥过滤器;3—节流阀;4—质量流量计;5—预热段;6—视镜;7—实验段;8—石英玻璃视镜;9—蒸发压力调节阀;10—冷凝器;11—储液罐;12—调压器"

图2

实验段热电偶布置示意图"

表1

实验测量仪表主要参数"

测量仪表型号量程精度
质量流量计DMF-1-3-A0 ~ 500 kg/h0.2%
热电偶T型0 ~ 200℃±0.1℃
精密压力表YB-150B0 ~ 1.6 MPa0.25%
压力变送器PPM-T132A0 ~ 1.6 MPa0.5%FS
差压变送器PPM-T30510 ~ 50 kPa0.1%FS

数字万用表

VC980+

0 ~ 200 V

0 ~ 20A

0.5%

图3

单相流动实验中的热损失率"

图4

单相实验所测Nu与计算所得Nu的对比"

表2

实验主要参数最大相对不确定度"

实验参数相对不确定度/%
T0.224
p2.687
G0.531
q5.431
hexp11.493
xin5.434
xout7.688

图5

不同质量流速下R245fa/R141b (0.5/0.5) 的沸腾传热系数随干度的变化"

图6

不同热通量下R245fa/R141b (0.5/0.5) 的沸腾传热系数随干度的变化"

图7

不同饱和压力下R245fa/R141b (0.5/0.5) 的沸腾传热系数随干度的变化"

图8

不同工况下质量分数对R245fa/R141b沸腾传热系数的影响"

图9

4种关联式的预测结果"

表3

光滑管内沸腾传热系数关联式预测精度"

关联式MAD/%

30%以内

数据点/%

25%以内

数据点/%

Gungor-Winterton[23]16.7682.7475.11
Liu-Winterton[12]17.6284.3477.69
Zhang[29]38.5152.3347.13
Zou[22]17.9484.2177.22
1 Mahmoudi A, Fazli M, Mora M R. A recent review of waste heat recovery by Organic Rankine Cycle[J]. Applied Thermal Engineering, 2018, 143: 660-675.
2 Rahbar K, Mahmoud S, Al-Dadah R K, et al. Review of organic Rankine cycle for small-scale applications[J]. Energy Conversion and Management, 2017, 34(15): 135-155.
3 王志奇, 周乃君, 夏小霞, 等. 有机朗肯循环发电系统的多目标参数优化[J]. 化工学报, 2013, 64(5): 1710-1716.
Wang Z Q, Zhou N J, Xia X X, et al. Multi-objective parametric optimization of power generation system based on organic Rankine cycle[J]. CIESC Journal, 2013, 64(5): 1710-1716.
4 Sun H C, Qin J, Hung T C, et al. Effect of flow losses in heat exchangers on the performance of organic Rankine cycle[J]. Energy, 2019, 172: 391-400.
5 李鹏, 梅中恺, 韩中合, 等. 考虑蒸发器压降的有机朗肯循环性能分析[J]. 动力工程学报, 2019, 39(1): 79-84.
Li P, Mei Z K, Han Z H, et al. Performance analysis of an organic Rankine cycle considering evaporator pressure drop[J]. Journal of Chinese Society of Power Engineering, 2019, 39(1): 79-84.
6 王夺, 赵英汝, 李宁, 等. 工质R245fa水平管内流动沸腾换热的试验研究[J]. 流体机械, 2017, 45(4): 54-57.
Wang D, Zhao Y Y, Li N, et al. The experimental study on flow boiling heat transfer of working fluid R245fa in horizontal tube[J]. Fluid Machinery, 2017, 45(4): 54-57.
7 黄晓艳, 王华, 王辉涛. R245fa传热特性的实验研究[J]. 武汉理工大学学报, 2011, 33(3): 67-71.
Huang X Y, Wang H, Wang H T. Experimental study on evaporating heat transfer characteristics of HFC-245fa[J]. Journal of Wuhan University of Technology, 2011, 33(3): 67-71.
8 戴源德, 林秦汉, 邹思凯, 等. R290在水平光滑管内的沸腾换热[J]. 化工学报, 2017, 68(9): 3420-3426.
Dai Y D, Lin Q H, Zou S K, et al. Boiling heat transfer performances of R290 in smooth horizontal tubes[J]. CIESC Journal, 2017, 68(9): 3420-3426.
9 Lillo G, Mastrullo R, Mauro A W, et al. Flow boiling of R1233zd(E) in a horizontal tube: experiments, assessment and correlation for asymmetric annular flow[J]. International Journal of Heat and Mass Transfer, 2019, 129: 547-561.
10 Zhang Y, Tian R, Dai X Y, et al. Experimental study of R134a flow boiling in a horizontal tube for evaporator design under typical Organic Rankine Cycle pressures[J]. International Journal of Heat and Fluid Flow, 2018, 71: 210-219
11 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436.
Jiang L L, Liu J H, Zhang L, et al. Flow boiling heat transfer characteristics of CO2 in horizontal micro-tube[J]. CIESC Journal, 2018, 69(4): 1428-1436.
12 Liu Z, Winterton R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759-2766.
13 Yang Z Q, Gong M Q, Chen G F, et al. Two-phase flow patterns, heat transfer and pressure drop characteristics of R600a during flow boiling inside a horizontal tube[J]. Applied Thermal Engineering, 2017, 120: 654-671.
14 Liu C W, Gao T. Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy[J]. Energy, 2019, 171: 95-108.
15 Lecompt S, Ameel B, Ziviani D. Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles[J]. Energy Conversion and Management, 2014, 85: 727-739.
16 胡自成, 马虎根, 宋新南. 水平细圆管内非共沸混合工质的流动沸腾[J]. 化工学报, 2006, 57(11): 2577-2581.
Hu Z C, Ma H G, Song X N. Flow boiling heat transfer of non-azeotropic refrigerant mixtures in horizontal mini-scale tube[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(11): 2577-2581.
17 Li M X, Dang C B, Hiharab E. Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube(Ⅰ) : Experimental investigation[J]. International Journal of Heat and Mass Transfer, 2012, 55: 3437-3446.
18 Guo C, Wang J, Du X Z, et al. Experimental flow boiling characteristics of R134a/R245fa mixture inside smooth horizontal tube[J]. Applied Thermal Engineering, 2016, 103: 901-908.
19 Anowar H M, Onaka Y, Hasan M M, et al. Heat transfer during evaporation of R1234ze(E), R32, R410A and a mixture of R1234ze(E) and R32 inside a horizontal smooth tube[J]. International Journal of Refrigeration, 2013, 36: 465 -477.
20 吴晓敏, 赵然, 魏兆福, 等. CO2/丙烷混合工质水平管内流动沸腾换热特性研究[J]. 工程热物理学报, 2013, (4): 706-709.
Wu X M, Zhao R, Wei Z F, et al. Experimental studies on flow boiling heat transfer of R744/R290 mixtures in a horizontal tube[J]. Journal of Engineering Thermophysics, 2013, (4): 706-709.
21 Yang Z Q, Chen G F, Zhao Y X, et al. Experimental study on flow boiling heat transfer of a new azeotropic mixture of R1234ze(E)/R600a in a horizontal tube[J]. International Journal of Refrigeration, 2018, 93: 224-235.
22 Zou X, Gong M Q, Chen G F, et al. Experimental study on saturated flow boiling heat transfer of R170/R290 mixtures in a horizontal tube[J]. International Journal of Refrigeration, 2010, 33: 371-380.
23 Gungor K E, Winterton R H S. Simplified general correlation for saturated flow boiling and comparisons with data[J]. Chemical Engineering Research and Design, 1987, 65(2): 148-156.
24 Shah M M. A method for predicting heat transfer during boiling of mixtures in plain tubes[J]. Applied Thermal Engineering, 2015, 89: 812-821.
25 Kajurek J, Rusowicz A, Grzebielec A, et al. Selection of refrigerants for a modified organic Rankine cycle[J]. Energy, 2019, 168: 1-8.
26 Wang Y Z, Zhao J, Wang Y, et al. Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle[J]. Applied Thermal Engineering, 2017, 114: 1355-1363.
27 Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22.
28 Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Fluid Thermal Science, 1998, 1(1): 3-17.
29 Zhang L, Hihara E, Saito T. Boiling heat transfer of a ternary refrigerant mixture inside horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 1997, 40: 2009-2017.
[1] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[2] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[3] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[4] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[5] 李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
[6] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
[7] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[8] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[9] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[10] 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870.
[11] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[12] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[13] 张楠, 陈龙祥, 胡芃. 混合工质临界性质的推算研究[J]. 化工学报, 2019, 70(S2): 1-7.
[14] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[15] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王方, 许春晓, 周力行. Validation of the RANS-SOM Combustion Model Using Direct Numerical Simulation of Incompressible Turbulent Reacting Flows[J]. CIESC Journal, 2008, 16(5): 679 -685 .
[2] 吴志强, 刘志平, 汪文川, 范益群, 徐南平. Diffusion of H2,CO,N2,O2 and CH4 Through Nanoporous Carbon Membranes[J]. CIESC Journal, 2008, 16(5): 709 -714 .
[3] 宣爱国, 吴元欣, 马沛生, 孙炜, 沈喜洲. Measurement and Correlation of Solubility of Carbon Monoxide in Phenol+Ethanol Solvents[J]. CIESC Journal, 2008, 16(5): 762 -765 .
[4] 李修亮, 苏宏业, 褚健. Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine[J]. CIESC Journal, 2009, 17(1): 95 -99 .
[5] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. CIESC Journal, 1999, 50(2): 174 -184 .
[6] 姚秀颖, 吴桂英, 关彦军, 张锴. 液固流化床内固含率时空分布特性的CFD模拟 [J]. 化工学报, 2010, 61(9): 2287 -2295 .
[7] 李伟,欧阳藩. 制备色谱填料信息系统 [J]. CIESC Journal, 2000, 51(S1): 348 -351 .
[8] 白立光;朱吉钦;陈标华;李成岳;费维扬. 离子液体在传热及相变储热中的应用研究进展 [J]. CIESC Journal, 2010, 61(12): 3037 -3043 .
[9] 张志腾, 杨立明, 王玉军, 骆广生, 戴猷元. 利用甲基纤维素辅助合成介孔二氧化硅微球 [J]. 化工学报, 2008, 59(10): 2638 -2643 .
[10] 朱葛, 赵长遂, 陈晓平, 林良生, 周骛. 石化污泥与煤流化床混烧污染物排放特性 [J]. 化工学报, 2008, 59(10): 2627 -2633 .