化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1802-1811.doi: 10.11949/0438-1157.20190835

• 能源和环境工程 • 上一篇    下一篇

马脊梁镜煤有机质大分子模型构建及分子模拟

周星宇1(),曾凡桂1,相建华1(),邓小鹏2,相兴华2   

  1. 1.太原理工大学地球科学与工程系,煤科学与技术教育部和山西省重点实验室,山西 太原 030024
    2.山西能源学院,山西 太原 030604
  • 收稿日期:2019-07-22 修回日期:2019-10-10 出版日期:2020-04-05 发布日期:2019-10-17
  • 通讯作者: 相建华 E-mail:760093617@qq.com;xiangjianhua@tyut.edu.cn
  • 作者简介:周星宇(1994—),男,硕士研究生,760093617@qq.com
  • 基金资助:
    国家自然科学基金项目(41572144);山西省应用基础研究项目(201601D021137);晋煤集团2018年度科研项目(LYJS-JSKF-2018-0015)

Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain

Xingyu ZHOU1(),Fangui ZENG1,Jianhua XIANG1(),Xiaopeng DENG2,Xinghua XIANG2   

  1. 1.Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Department of Geoscience and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanxi Institute of Energy, Taiyuan 030604, Shanxi, China
  • Received:2019-07-22 Revised:2019-10-10 Online:2020-04-05 Published:2019-10-17
  • Contact: Jianhua XIANG E-mail:760093617@qq.com;xiangjianhua@tyut.edu.cn

摘要:

运用工业分析、元素分析及13C核磁共振波谱、X射线光电子能谱和傅里叶变换红外光谱分析,构建了马脊梁镜煤有机质大分子结构模型。在该结构模型中,芳环桥碳与周碳之比为0.24,芳环的类型以蒽、萘为主;脂肪碳原子主要是甲基、亚甲基和次甲基,氧接脂碳含量最少;每个大分子平均含氧原子22个,氧原子存在于酚羟基、羰基、羧基和醚氧中,个数分别为9、4、3和3;氮原子以一个吡啶和一个吡咯的方式存在。该结构模型的平均分子式为C222H168O22N2,分子量为3212。对所建分子模型分别进行了核磁共振碳谱、红外光谱及密度的模拟计算,并与测试结果进行对比验证。结果表明,所建模型能够较好地反映马脊梁镜煤有机质的大分子结构特征。

关键词: 煤, 模型, 计算化学, 分子模拟, 光谱模拟, 密度模拟

Abstract:

The macromolecular structure model of organic matter in Majiliang vitrain was constructed by means of proximate analysis, ultimate analysis, 13C nuclear magnetic resonance spectroscopy(13C NMR), Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS). In this structural model, the ratio of aromatic ring bridge carbon to peripheral carbon is 0.24, the aromatic compounds mainly exist in the form of anthracene and naphthalene; the aliphatic structure mainly exists in the form of methyl, methylene, methyne and quaternary carbon, the content of oxygen-bound aliphatic carbon is the least; each macromolecule contains an average of 22 oxygen atoms, the oxygen atoms exist in the form of phenolic hydroxyl group, carbonyl group, carboxyl group and ether oxygen with the numbers of 9, 4, 3 and 3, respectively; nitrogen atoms exist in the form of a pyridine and a pyrrole. The average molecular formula of the macromolecule is C222H168O22N22, and the molecular weight is 3212. The molecular model of the built molecular model was simulated by 13C NMR, infrared and density, and compared with the test results. The results show that the model can reflect the macromolecular structure of the organic matter of the Majiliang vitrain.

Key words: coal, model, computational chemistry, molecular simulation, spectral simulation, density simulation

中图分类号: 

  • TQ 530

表1

马脊梁烟煤样的工业分析和元素分析"

Rmax0/%Proximate analysis/ % (mass)Ultimate analysis/% (mass, daf)
MadAdVdafCHONS
0.741.7020.3038.1881.695.0911.141.350.73

图1

马脊梁烟煤的13C NMR谱图"

图2

马脊梁烟煤13C NMR分峰拟合图"

表2

马脊梁烟煤的核磁结构参数"

fafaCfa'faHfaNfaPfaSfaBfalfal*falHfalO
74.24%5.10%69.14%45.68%23.46%6.08%4.06%13.32%25.76%10.05%12.64%3.07%

图3

马脊梁烟煤XPS N(1s)光谱"

表3

马脊梁烟煤的XPS N(1s)数据"

AttributionPeak information
Binding energy/eVareafitTP ωmol/%
pyridine nitrogen398.9040.48
pyrrole nitrogen400.4444.54
quaternary nitrogen402.016.49
nitrogen oxide403.068.49

图4

马脊梁烟煤XPS S(2p)光谱"

表4

马脊梁烟煤的XPS S(2p)数据"

AttributionPeak information
Binding energy/eVareafitTP ωmol/%
mercaptan thiophenol163.9658.79
thiophene type sulfide165.838.48
sulfoxide sulfur168.0610.79
sulfone type sulfur169.4513.72
inorganic sulfur171.068.20

图5

马脊梁烟煤FTIR分峰拟合图(1000~1800 cm-1)"

表5

马脊梁烟煤FTIR吸收峰参数(1000~1800 cm-1)"

Serial No.Peak position /cm-1Relative area/%Attribution
11010.9310.57灰分
21036.289.59灰分
31058.614.55灰分
41098.2710.99酚、醇、醚、苯氧基、酯中C—O伸缩振动
51184.8210.02酚、醇、醚、苯氧基、酯中C—O伸缩振动
61265.147.05酚、醇、醚、苯氧基、酯中C—O伸缩振动
71335.246.66酚、醇、醚、苯氧基、酯中C—O伸缩振动
81383.413.96CH3—对称弯曲振动
91419.543.48CH3CH2—的不对称变形振动
101448.364.61CH3CH2—的不对称变形振动
111488.444.79芳香烃的CC骨架振动
121570.096.71芳香烃的CC骨架振动
131608.649.72芳香烃的CC骨架振动
141649.664.68共轭的 CO 的伸缩振动
151706.902.62羧酸的 CO 的伸缩振动

图6

马脊梁烟煤大分子结构模型"

表6

马脊梁烟煤分子结构模型的结构参数"

Molecular formulaMolecular weightElement content/%Aromaticity/%
CHON
C222H168O22N2321282.945.1310.960.9769.14

图7

神东煤大分子结构模型[25]"

表7

马脊梁烟煤与神东煤结构中芳香结构单元的类型和数量"

TypeQuantities of aromatic structural units
SDCMBC
05
95
54
11
11

图8

马脊梁烟煤结构模型实验和计算得到的13C NMR谱图"

图9

马脊梁烟煤结构模型的最低能量几何构型"

图10

马脊梁烟煤结构模型实验和计算得到的FTIR谱图"

图11

马脊梁烟煤结构模型密度和势能的关系"

图12

密度为1.37 g/cm3的马脊梁烟煤结构几何构型"

1 彭苏萍, 张博, 王佟. 我国煤炭资源“井”字形分布特征与可持续发展战略[J]. 中国工程科学, 2015, 17(9): 29-35.
Peng S P, Zhang B, Wang T. China s coal resources “well” shape distribution characteristics and sustainable development strategy [J]. China Engineering Science, 2015, 17(9): 29-35.
2 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197.
Xie H P, Wang J H, Wang G F, et al. The new concept of coal revolution and the conception of coal science and technology development[J]. Journal of China Coal Society, 2018, 43(5): 1187-1197.
3 王素珍. 《物质结构与性质》和《有机化学基础》模块的教学时序对“有机物分子结构与性质”学习影响的研究[J]. 化学教学, 2014, (6): 16-19.
Wang S Z. Study on the influence of the teaching time series of “Material Structure and Properties” and “Organic Chemistry Foundation” module on the learning and structure of organic matter[J]. Chemical Teaching, 2014, (6): 16-19.
4 Heek K H V. Progress of coal science in the 20th century[J]. Fuel, 2000, 79(1): 1-26.
5 Mathews J P, Chaffee A L. The molecular representations of coal — a review[J]. Fuel, 2012, 96(1): 1-14.
6 高天明, 张艳. 中国煤炭资源高效清洁利用路径研究[J]. 煤炭科学技术, 2018, 46(7): 157-164.
Gao T M, Zhang Y. Study on the path of efficient and clean utilization of coal resources in China [J]. Coal Science and Technology, 2018, 46 (7): 157-164.
7 Xue Y, Zhao W N, Ma P, et al. Ternary blends of biodiesel with petro-diesel and diesel from direct coal liquefaction for improving the cold flow properties of waste cooking oil biodiesel[J]. Fuel, 2016, 177: 46-52.
8 王宝俊, 张玉贵, 谢克昌. 量子化学计算在煤的结构与反应性研究中的应用[J]. 化工学报, 2003, 54(4): 477-488.
Wang B J, Zhang Y G, Xie K C. Application of quantum chemistry calculation to investigation on coal structure and reactivity[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4): 477-488.
9 张硕, 张小东, 杨延辉, 等. 溶剂萃取下构造煤的XRD结构演化特征[J]. 光谱学与光谱分析, 2017, 37(10): 3220-3224.
Zhang S, Zhang X D, Yang Y H, et al. XRD structure evolution characteristics of structural coal extracted with solvent [J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3220-3224.
10 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1438.
Liu Z Y. Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1435.
11 Shine J H. From coal to single-stage and two-stage products: a reactive model of coal structure [J]. Fuel, 1984, 63(9): 1187-1196.
12 蔺华林, 李克健, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 41(6): 641-648.
Lin H L, Li K J, Zhang X W. Structure characterization and model construction of Shangwan coal and it s inertinite concentrated[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 641-648.
13 崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704-717.
Cui X, Yan H, Zhao P T. Summary of the construction and analysis methods of coal molecular structure model[J]. Journal of China University of Mining & Technology, 2019, 48(4): 704-717.
14 Li W, Zhu Y M, Chen S B, et al. Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9): 647-652.
15 Yan G C, Zhang Z Q, Yan K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1): 147-156.
16 Xiang J H, Zeng F G, Li B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 391-400.
17 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报, 2017, 46(5): 939-958.
Qin Z H. The theory of coal inlay structure model[J]. Journal of China University of Mining & Technology, 2017, 46(5): 939-958.
18 冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
Feng W, Gao H F, Wang G, et al. Molecular model construction of Zaoquan coal and molecular simulation of pyrolysis[J]. CIESC Journal, 2019, 70(4): 1522-1531.
19 Meng J Q, Zhong R Q, Li S C, et al. Molecular model construction and study of gas adsorption of Zhaozhuang coal[J]. Energy & Fuels, 2018, 32(9): 9727-9737.
20 Gao M J, Li X X, Guo L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Processing Technology, 2018, 178: 197-205.
21 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388.
Wang J G, Zhao X H. Key technologies and demonstration of low-rank coal clean and efficient cascade utilization[J]. Journal of the Chinese Academy of Sciences, 2012, 27(3): 382-388.
22 李昌盛. 大同煤系地层中火成岩对煤层的影响研究[J]. 华北国土资源, 2017, (2): 58-59.
Li C S. Study on the influence of igneous rocks on coal seam in Datong coal measures strata[J]. Huabei Land and Resources, 2017, (2): 58-59.
23 孙昱东, 王雪, 魏成, 等. 固定床渣油加氢脱金属废催化剂上焦炭结构和组成沿床层变化研究[J]. 燃料化学学报, 2019, 47(2): 167-173.
Sun Y D, Wang X, Wei C, et al. Research for structure and composition of coke on spent commercial residue hydrotreating catalysts along HDM bed[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 167-173.
24 赵云刚. 脱灰处理对伊敏褐煤微观结构影响的实验与分子模拟研究[D]. 太原: 太原理工大学, 2018.
Zhao Y G. Experimental and molecular simulation study on the effect of deashing treatment on the microstructure of Yimin lignite [D]. Taiyuan: Taiyuan University of Technology, 2018.
25 贾建波, 曾凡桂, 孙蓓蕾. 神东2-2煤镜质组大分子结构模型13C-NMR谱的构建与修正[J]. 燃料化学学报, 2011, 39(9): 652-657.
Jia J B, Zeng F G, Sun B L. Construction and modification of 13C-NMR spectra of macromolecular structure model of Shendong 2-2 coal mirror group[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 652-657.
26 Xiang J H, Zeng F G, Liang H Z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488.
27 鄢晓忠, 邱靖, 尹艳山, 等. 褐煤中官能团对其燃烧特性的影响[J]. 煤炭科学技术, 2016, 44(4): 169-174.
Yan X Z, Qiu J, Yin Y S, et al. Effect of functional groups on the combustion characteristics of lignite[J]. Coal Science and Technology, 2016, 44(4): 169-174.
28 葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析, 2017, 37(8): 2406-2411.
Ge T, Zhang M X, Ma X M. FTIR and XPS spectral characterization of coking coal structure in Xinyang [J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2406-2411.
29 魏强, 唐跃刚, 李薇薇, 等. 煤中有机硫结构研究进展[J]. 煤炭学报, 2015, 40(8): 1911-1923.
Wei Q, Tang Y G, Li W W, et al. Progress in the study of organic sulfur structure in coal [J]. Journal of Coal, 2015, 40 (8): 1911-1923.
30 申曙光, 李焕梅, 王涛, 等. 煤化程度对煤基固体酸结构及其水解纤维素性能的影响[J]. 燃料化学学报, 2013, 41(12): 1466-1472.
Shen S G, Li H M, Wang T, et al. Influence of degree of coal mineralization on structure of coal-based solid acid and its hydrolytic cellulose performance [J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1466-1472.
31 李美芬, 曾凡桂, 孙蓓蕾, 等. 低煤级煤热解H2生成动力学及其与第一次煤化作用跃变的关系[J]. 物理化学学报, 2009, 25(12): 2597-2603.
Li M F, Zeng F G, Sun B L, et al. The kinetics of H2 formation in pyrolysis of low coal grade coal and its relationship with the first coalification jump [J]. Journal of Physical Chemistry, 2009, 25 (12): 2597-2603.
32 李伍, 朱炎铭, 陈尚斌, 等. 低煤级煤生烃与结构演化的耦合机理研究[J]. 光谱学与光谱分析, 2013, 33(4): 1052-1056.
Li W, Zhu Y M, Chen S B, et al. Coupling mechanism of hydrocarbon generation and structure evolution in low coal grade coal[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1052-1056.
33 Dong K, Zeng F G, Jia J C, et al. Molecular simulation of the preferential adsorption of CH4 and CO2 in middle-rank coal[J]. Molecular Simulation, 2019, 45(1): 15-25.
34 相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报, 2016, 41(6): 1498-1506.
Xiang J H, Zeng F G, Liang H Z, et al. Carbon structure characteristics and evolution mechanism of coal with different metamorphic degrees[J]. Journal of China Coal Society, 2016, 41(6): 1498-1506.
35 Li Z K, Wei X Y, Yan H L, et al. Advances in lignite extraction and conversion under mild conditions[J]. Energy Fuel, 2015, 29: 6869-6886.
36 李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216.
Li Z M, Wang Y M, Li P, et al. Construction of macromolecular model and quantum chemical calculation of Hongshiwan coal in Ningdong [J]. CIESC Journal, 2018, 69 (5): 2208-2216.
37 Jia J B, Wang Y, Li F H, et al. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method[J]. Spectroscopy & Spectral Analysis, 2014, 34(1): 47-51.
38 马延平, 相建华, 李美芬, 等. 柳林3#镜煤吡啶残煤大分子结构模型及分子模拟[J]. 燃料化学学报, 2012, 40(11): 1300-1309.
Ma Y P, Xiang J H, Li M F, et al. Macromolecular structure model and molecular simulation of Liulin 3# mirror coal pyridine residual coal[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1300-1309.
39 张小东, 郝宗超, 张硕, 等. 溶剂改造下构造煤纳米级孔隙的差异性变化及机理[J]. 中国矿业大学学报, 2017, 46(1): 148-154.
Zhang X D, Hao Z C, Zhang S, et al. The variation and mechanism of nano-scale pores in tectonic coal under solvent modification[J]. Journal of China University of Mining & Technology, 2017, 46(1): 148-154.
40 Li Z, Ward C R, Gurba L W. Occurrence of non-mineral inorganic elements in macerals of low-rank coals[J]. Int. J. Coal Geol. , 2010, 81(4): 242-250.
[1] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[2] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[3] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[4] 周芮, 程光平, 张浩, 任枫, 王舜浩, 张小斌. 煤油贮箱冷氦鼓泡增压过程数值研究[J]. 化工学报, 2020, 71(3): 965-973.
[5] 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408.
[6] 李佳, 梁贞菊, 王照亮, 赵健, 唐大伟. 不同分子模型对甲烷水合物分解微观特性表征[J]. 化工学报, 2020, 71(3): 955-964.
[7] 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263.
[8] 冯毅萍, 章途潮, 陈歆. 面向智能制造的多要素生产成本建模方法[J]. 化工学报, 2020, 71(3): 1111-1121.
[9] 何德峰, 张永达, 李廉明, 仇翔. 循环流化床燃烧系统无终端约束字典序经济预测控制[J]. 化工学报, 2020, 71(3): 1210-1216.
[10] 董吉开, 杜文莉, 王冰, 许乔伊. 湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020, 71(3): 1163-1173.
[11] 黄耀波, 刘佳新, 徐祖华, 赵均, 邵之江. 基于PWA融合模型的注塑过程保压段建模及控制策略[J]. 化工学报, 2020, 71(3): 1103-1110.
[12] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[13] 李英泽, 杨路, 王琦, 杨思宇. BGL炉煤气化过程建模和模拟[J]. 化工学报, 2020, 71(3): 1174-1188.
[14] 温宏炎, 张玉明, 纪德馨, 张光义. 油泥焦与褐煤共燃特性及动力学[J]. 化工学报, 2020, 71(2): 755-765.
[15] 孙明慧, 陈静圆, 肖南, 陈奥博, 王旭珍, 邱介山. 煤基富氮层级多孔碳制备及其催化脱硫性能[J]. 化工学报, 2020, 71(2): 660-668.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王方, 许春晓, 周力行. Validation of the RANS-SOM Combustion Model Using Direct Numerical Simulation of Incompressible Turbulent Reacting Flows[J]. CIESC Journal, 2008, 16(5): 679 -685 .
[2] 王淑华, 张华, 王经. Cryogenic Liquid Slug and Taylor Bubble Length Distributions in an Inclined Tube[J]. CIESC Journal, 2009, 17(1): 20 -26 .
[3] 刘熠斌, 陈小博, 赵辉, 杨朝合. Establishment of Kinetic Model for Catalytic Pyrolysis of Daqing Atmospheric Residue[J]. CIESC Journal, 2009, 17(1): 78 -82 .
[4] 张文启, 饶品华, 张辉, 徐菁利. The Role of Diatomite Particles in the Activated Sludge System for Treating Coal Gasification Wastewater[J]. CIESC Journal, 2009, 17(1): 167 -170 .
[5] 陈国权,冯昌贻,梁东白,韦士平. 低压氢气下粗苯的脱硫精制 第二报 [J]. CIESC Journal, 1965, 16(1): 13 -24 .
[6] 徐静安,黄鼎勋,靳桂林,黄士夫. 逐步回归法在废热锅炉水循环试验中的应用 [J]. CIESC Journal, 1981, 32(1): 89 -95 .
[7] 徐忠. 非极性混合物的假临界常数 [J]. CIESC Journal, 1980, 31(2): 191 -200 .
[8] 唐继荣. 用激光全息照相法研究液体射流破碎、分散技术 [J]. CIESC Journal, 1981, 32(4): 380 -387 .
[9] 颜姝丽, 鲁厚芳, 姜利寒, 梁斌. 固体碱催化剂用于油脂甲醇酯交换反应制备生物柴油 [J]. 化工学报, 2007, 58(10): 2506 -2512 .
[10] 苟湘, 周俊虎, 周志军, 杨卫娟, 刘建忠, 岑可法. 水蒸气对煤粉再燃还原NO的影响 [J]. 化工学报, 2007, 58(10): 2629 -2635 .