化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 68-76.doi: 10.11949/0438-1157.20190824

• 流体力学与传递现象 • 上一篇    下一篇

运载火箭共底贮箱加注过程非稳态温度分布数值模拟

王彬1(),杨瑞生2,郑卫东2,周芮1,张小斌1()   

  1. 1.浙江大学制冷与低温研究所,浙江 杭州 310027
    2.北京宇航系统工程研究所,北京 100076
  • 收稿日期:2019-07-17 修回日期:2019-12-14 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 张小斌 E-mail:binw@zju.edu.cn;zhangxbin@zju.edu.cn
  • 作者简介:王彬(1995—),男,硕士研究生,binw@zju.edu.cn

Numerical simulations on unsteady temperature distribution of sandwich bulkhead tank in launch vehicle

Bin WANG1(),Ruisheng YANG2,Weidong ZHENG2,Rui ZHOU1,Xiaobin ZHANG1()   

  1. 1.Institution of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.Beijing Institute of Astronautic Systems Engineering, Beijing 100076, China
  • Received:2019-07-17 Revised:2019-12-14 Online:2020-04-25 Published:2020-05-22
  • Contact: Xiaobin ZHANG E-mail:binw@zju.edu.cn;zhangxbin@zju.edu.cn

摘要:

以液氧和煤油为推进剂的新一代运载火箭,承力式共底贮箱结构一方面可以缩短整个运载器长度,改善运载器长径比,二能取消液氧贮箱与煤油贮箱间的箱间段,减轻结构质量。但要求共底夹层需要良好的隔热性能,同时承受煤油箱和液氧箱双向压力载荷。获得加注过程共底夹层的温度非稳态分布是分析夹层隔热和应力性能的基础。基于CFD方法,模拟了液氮加注过程,共底贮箱包括液氮贮箱和煤油贮箱以及共底夹层,从室温到加注完成的非稳态温度分布。数值模型考虑了贮箱表面可能结冰时的热边界条件变化以及由于壁面漏热导致的液氮/氮蒸气相变蒸发。为了防止煤油局部温度过低,重点分析了叉形环处包裹或未包裹PMI绝热材料对煤油温度场和液氮蒸发率的影响。计算结果表明,叉形环处包裹绝热材料时在自然蒸发阶段煤油局部最低温度小于240 K,而未包裹绝热材料时局部最低温度大于260 K,满足设计要求。仿真结果为液氧和煤油共底贮箱的优化设计提供参考。

关键词: 共底贮箱, 煤油, 泡沫, 液氮蒸发, 相变, CFD

Abstract:

In the launch vehicle with liquid oxygen and kerosene as propellants, the load-bearing sandwich bulkhead tank can shorten the length and lengthen the aspect ratio of the whole vehicle. And it can eliminate the segment between the liquid oxygen (LO2) tank and the kerosene tank, so as to reduce the structural mass. The bulkhead is required to have good thermal insulation properties while bearing the bi-directional pressure load of the LO2 and kerosene tank. The unsteady temperature distribution of the tank, including the liquid nitrogen (LN2) and the kerosene tank and the foam cored sandwich bulkhead, is analyzed with the CFD method when it is cooled down from room temperature to the moment the LN2 filling is completed. The numerical model considers the effect of icing on the thermal boundary of the tank surface and the LN2/vapor nitrogen (VN2) phase change process due to heat leakage. The influence of whether the fork ring is wrapped or unwrapped PMI insulation material on the kerosene temperature and the LN2 evaporation rate is especially analyzed. The calculation results show that the local minimum temperature of the kerosene is less than 240 K when the fork ring is wrapped with the insulation material, while it is greater than 260 K when the insulation material is not included. The calculation results provide reliable reference for the optimal design of LO2 and kerosene bulkhead tank.

Key words: bulkhead tank, kerosene, foam, liquid nitrogen evaporation, phase change, CFD

中图分类号: 

  • TB 661
1 张卫东, 王东保. 新一代低温液体快速发射运载火箭及其发展[J]. 上海航天, 2016, 33: 1-7.
Zhang W D, Wang D B. New generation cryogenic quick launching launch vehicle and development [J]. Aerospace Shanghai, 2016, 33: 1-7.
2 徐心宇, 王祝堂. 长征五号火箭燃料箱铝合金打造[J]. 轻合金加工技术, 2017, 45(6): 11-13.
Xu X Y, Wang Z T. Al-alloy-made fuel tank of the Long March 5 rocket [J]. Light Alloy Fabrication Technology, 2017, 45(6): 11-13.
3 李茂, 韩涵, 唐杰, 等. 大温差隔热共底在运载贮箱中的应用研究[J]. 上海航天, 2016, 33: 43-49.
Li M, Han H, Tang J, et al. Application of PMI foam cored sandwich bulkhead tank in launch vehicle [J]. Aerospace Shanghai, 2016, 33: 43-49.
4 孙培杰, 李鹏, 张振涛, 等. 新一代运载火箭共底贮箱隔热性能试验及环境预示[J]. 上海航天, 2014, 31(5): 54-68.
Sun P J, Li P, Zhang Z T, et al. Experimental and numerical investigation of heat insulation performances of coplanar tanks in new generation launch vehicle [J]. Aerospace Shanghai, 2014, 31(5): 54-68.
5 李照谦, 南博华, 何腾锋, 等. 新一代运载火箭贮箱大温差泡沫夹层共底研制[J]. 宇航材料工艺, 2016, 4: 67-72.
Li Z Q, Nan B H, He T F, et al. Development of large temperature difference foam sandwich co-bulkhead of cryogenic tank for new-generation launch vehicle [J]. Aerospace Materials & Technology, 2016, 4: 67-72.
6 孙春方, 薛元德, 胡培. 复合材料泡沫夹层结构力学性能与试验方法[J]. 玻璃钢/复合材料, 2005, 2: 3-6.
Sun C F, Xue Y D, Hu P. Mechanical properties and experimental methods of composite foam sandwich structures [J]. Fiber Reinforced Plastics/Composite, 2005, 2: 3-6.
7 湛利华, 关成龙, 黄诚, 等. 航天低温复合材料贮箱国内外研究现状分析[J]. 航空制造技术, 2019, 62(16): 79-87.
Zhan L H, Guan C L, Huang C, et al. Analysis of research status of composite cryotank for space [J]. Aeronautical Manufacturing Technology, 2019, 62(16): 79-87.
8 朱天宇. 大型共底贮箱结构优化设计[D]. 大连: 大连理工大学, 2018.
Zhu T Y. Optimal design of large sandwich bulkhead tank structure [D]. Dalian: Dalian University of Technology, 2018.
9 刘士良, 林保真. 飞行器共底贮箱的优化设计[J]. 中国空间科学技术, 1982, 2: 54-59.
Liu S L, Lin B Z. Optimal design of sandwich bulkhead tank for aircraft [J]. Chinese Space Science and Technology, 1982, 2: 54-59.
10 David W S,John T W. Buckling analysis of debonded sandwich panel under compression[J]. NASA Technical Memorandum, 1995,12: 1-10.
11 Zhan L, Li Y, Jin Y, et al. Thermodynamic performance of pressurization in a cryogenic tank [J]. Applied Thermal Engineering, 2017, 112: 801-810.
12 Wang L, Li Y, Zhao Z, et al. Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating [J]. International Journal of Heat and Mass Transfer, 2013, 62(1): 263-271.
13 Zuo Z Q, Sun P J, Jiang W B, et al. Thermal stratification suppression in reduced or zero boil-off hydrogen tank by self-spinning spray bar [J]. International Journal of Hydrogen Energy, 2019, 44(36): 20158-20172.
14 王舜浩, 朱文俐, 胡正根, 等. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
Wang S H, Zhu W L, Hu Z G, et al. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
15 Zhou R, Zhu W L, Hu Z G, et al. Simulations on effects of rated ullage pressure on the evaporation rate of liquid hydrogen tank [J]. International Journal of Heat and Mass Transfer, 2019, 134: 842-851.
16 罗天培, 张伟, 李茂, 等. 液氢贮箱停放过程中的力热分析[J]. 宇航学报, 2019, 40(5): 562-569.
Luo T P, Zhang W, Li M, et al. Thermodynamic analysis in liquid hydrogen tank while parking [J]. Journal of Astronautics, 2019, 40(5): 562-569.
17 邵业涛, 罗庶, 王浩苏, 等. 低温推进剂深度过冷加注技术研究及对运载火箭性能影响分析[J]. 宇航总体技术, 2019, 3(2): 18-25.
Shao Y T, Luo S, Wang H S, et al. Research on the supercooling loading technology of cryogenic propellant and its effects on rocket performance [J]. Astronautical Systems Engineering Technology, 2019, 3(2): 18-25.
18 周振君, 雷刚, 王天祥, 等. 低温液氮贮箱增压及排气流量控制方法[J]. 航空动力学报, 2018, 33(5): 1263-1269.
Zhou Z J, Lei G, Wang T X, et al. Control method of pressurization and venting flow rate in cryogenic tank [J]. Journal of Aerospace Power, 2018, 33(5): 1263-1269.
19 夏斯琦, 孙培杰, 李鹏, 等. 火箭燃料贮箱热力学排气系统控压性能仿真研究[J]. 制冷学报, 2019, 40(3): 109-114.
Xia S Q, Sun P J, Li P, et al. Simulation research on pressure control performance of thermodynamic venting system of rocket propellant tank [J]. Journal of Refrigeration, 2019, 40(3): 109-114.
20 杨世铭, 陶文铨. 传热学 [M]. 4版. 北京:高等教育出版社, 2006.
Yang S M, Tao W Q. Heat Transfer [M]. 4th ed. Beijing: Higher Education Press, 2006.
[1] 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226.
[2] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[3] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[4] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[5] 李梦迪, 王波, 王哲慧, 张晔, 杨荣, 李锦春. 基于环三磷腈磷氮阻燃剂的合成及其在聚氨酯泡沫的应用[J]. 化工学报, 2020, 71(4): 1871-1880.
[6] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[7] 赵少飞, 刘鹏, 李婉萍, 曾小红, 钟远红, 余林, 曾华强. 一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究[J]. 化工学报, 2020, 71(4): 1836-1843.
[8] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[9] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[10] 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408.
[11] 周芮, 程光平, 张浩, 任枫, 王舜浩, 张小斌. 煤油贮箱冷氦鼓泡增压过程数值研究[J]. 化工学报, 2020, 71(3): 965-973.
[12] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[13] 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870.
[14] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[15] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .