化工学报 ›› 2020, Vol. 71 ›› Issue (2): 584-593.doi: 10.11949/0438-1157.20190812
王修纲1,2,3(),吴裕凡1,2,郭潞阳1,2,路庆华3,叶晓峰1,2,曹育才1,2(
)
Xiugang WANG1,2,3(),Yufan WU1,2,Luyang GUO1,2,Qinghua LU3,Xiaofeng YE1,2,Yucai CAO1,2(
)
摘要:
基于CFD模拟与传热实验相结合的方法对5 L夹套聚合釜的传热性能进行研究。建立聚合釜的液固耦合稳态传热模型,获得釜内流体、夹套内流体及金属固体域内温度分布。开展传热实验对模拟结果进行验证,各对比点温度的最大相对误差在1%~5%范围内。通过模拟获得釜内外壁面传热系数及总传热系数,并关联出釜侧及夹套侧 Nu的经验式。结果表明:釜内流体温度分布方差始终在0.002以下,固体域内和传热边界层温度梯度较大,传热边界层厚度约3.8 mm;实验范围内,入口温度和反应放热量对釜内温度的影响显著,入口流速次之,搅拌转速影响最弱;夹套侧传热系数远小于釜侧传热系数,提高夹套侧传热系数是提升传热性能的关键;实验用聚合釜外表面散热量与内外温差呈正比,比例系数约为3.031 W·K -1。
中图分类号:
1 | Tan N, Yu L, Tan Z, et al. Kinetics of the propylene polymerization with prepolymerization at high temperature using Ziegler-Natta catalyst[J]. Journal of Applied Polymer Science, 2015, 132( 15): 223- 227. |
2 | Bergstra M F, Weickert G. Semi-batch reactor for kinetic measurements of catalyzed olefin co-polymerizations in gas and slurry phase[J]. Chemical Engineering Science, 2006, 61( 15): 4909- 4918. |
3 | Alshaiban A, Soares J B P. Effect of hydrogen and external donor on propylene polymerization kinetics with a 4th-generation Ziegler-Natta catalyst[J]. Macromolecular Reaction Engineering, 2012, 6( 6): 265- 274. |
4 | Rishina L A, Kissin Y V, Lalayan S S, et al. Synthesis of atactic polypropylene: propylene polymerization reactions with TiCl 4-Al(C 2H 5) 2Cl/Mg(C 4H 9) 2 catalyst [J]. Journal of Applied Polymer Science, 2019, 136: 47692- 47700. |
5 | Kulyabin P S, Portnyagin I A, Tsarev A N, et al. Ansa-zirconocenes bearing 5-NR2-6-alkyl-4-hydrocarbyl-2-methylindenyl moieties: synthesis, structure, stereoselective polymerization of propylene[J]. Journal of Organometallic Chemistry, 2019, 892: 41- 50. |
6 | Pater J T M, Weickert G, Swaaij W P M V. Polymerization of liquid propylene with a 4th generation Ziegler-Natta catalyst—influence of temperature, hydrogen and monomer concentration and prepolymerization method on polymerization kinetics[J]. Chemical Engineering Science, 2003, 57( 16): 3461- 3477. |
7 | Regestein L, Giese H, Zavrel M, et al. Comparison of two methods for designing calorimeters using stirred tank reactors[J]. Biotechnology and Bioengineering, 2013, 110( 1): 180- 190. |
8 | Samson J J C, Weickert G, Heerze A E, et al. Liquid-phase polymerization of propylene with a highly active catalyst[J]. AIChE Journal, 1998, 44( 6): 1424- 1437. |
9 | Pimplapure M S, Zheng X, Loos J, et al. Low-rate propylene slurry polymerization: morphology and kinetics[J]. Macromolecular Rapid Communications, 2005, 26( 14): 1155- 1158. |
10 | Pater J T M, Weickert G, Swaaij W P M V. Polymerization of liquid propylene with a fourth‐generation Ziegler-Natta catalyst: influence of temperature, hydrogen, monomer concentration, and prepolymerization method on powder morphology[J]. Journal of Applied Polymer Science, 2003, 87( 9): 1421- 1435. |
11 | Pater J T M, Weickert G, Swaaij W P M V. Propene bulk polymerization kinetics: role of prepolymerization and hydrogen[J]. AIChE Journal, 2003, 49( 1): 180- 193. |
12 | 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70( 2): 487- 495. |
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70( 2): 487- 495 | |
13 | 刘宝庆, 郑毅骏, 梁慧力, 等. 剪切变稀体系同心双轴搅拌釜内的气液分散模拟[J]. 化工学报, 2017, 68( 6): 2280- 2289. |
Liu B Q, Zheng Y J, Liang H L, et al. CFD simulation on shear-thinning gas-liquid dispersion in coaxial mixer[J]. CIESC Journal, 2017, 68( 6): 2280- 2289. | |
14 | Shi D P, Luo Z H, Zheng Z W. Numerical simulation of liquid-solid two-phase flow in a tubular loop polymerization reactor[J]. Powder Technology, 2010, 198( 1): 135- 143. |
15 | Gao X, Shi D P, Chen X Z, et al. Three-dimensional CFD model of the temperature field for a pilot-plant tubular loop polymerization reactor[J]. Powder Technology, 2010, 203( 3): 574- 590. |
16 | Xie L, Zhu L T, Luo Z H, et al. Multiscale modeling of mixing behavior in a 3D atom transfer radical copolymerization stirred-tank reactor[J]. Macromolecular Reaction Engineering, 2017, 1( 1): 1- 13. |
17 | Perarasu V T, Arivazhagan M, Sivashanmugam P. CFD modelling study of heat transfer in a coiled agitated vessel[J]. Progress in Computational Fluid Dynamics, 2014, 14( 3): 177- 188. |
18 | Perarasu T, Arivazhagan M, Sivashanmugam P. Experimental and CFD heat transfer studies of Al 2O 3-water nanofluid in a coiled agitated vessel equipped with propeller [J]. Chinese Journal of Chemical Engineering, 2013, 21( 11): 1232- 1243. |
19 | 车圆圆, 周俊超, 毕纪葛, 等. 改进CBY桨搅拌釜内单相流体流动与传热特性研究[J]. 高校化学工程学报, 2014, 28( 3): 489- 496. |
Che Y Y, Zhou J C, Bi J G, et al. Study on single phase fluid flow and heat-transfer performance in a stirred tank with an improved CBY hydrofoil impeller[J]. J . Chem. Eng. Chinese Univ., 2014, 28( 3): 489- 496. | |
20 | 毕纪葛, 潘万贵, 周俊超, 等. 四斜叶桨搅拌下釜内盘管非稳态对流传热过程的模拟和实验研究[J]. 高校化学工程学报, 2015, 29( 4): 780- 788. |
Bi J G, Pan W G, Zhou J C, et al. CFD simulation and experimental study of heat transfer in a stirred tank equipped with a pitched-blade turbine and helical coils[J]. J . Chem. Eng. Chinese Univ., 2015, 29( 4): 780- 788. | |
21 | 张丽, 田密密, 吴剑华. 螺旋片强化的套管式换热器壳侧传热特性[J]. 高校化学工程学报, 2011, 25( 1): 24- 29. |
Zhang L, Tian M M, Wu J H. Heat transfer performance of the shell side of double-pipe heat exchanger enhanced with helical fins[J]. J . Chem. Eng. Chinese Univ., 2011, 25( 1): 24- 29. | |
22 | Delaplace G, Torrez C, Leuliet J C, et al. Experimental and CFD simulation of heat transfer to highly viscous fluids in an agitated vessel equipped with a non standard helical ribbon impeller[J]. Chemical Engineering Research and Design, 2001, 79( 8): 927- 937. |
23 | Rukruang A, Chimres N, Kaew-On J, et al. Experimental and numerical study on heat transfer and flow characteristics in an alternating cross-section flattened tube[J]. Heat Transfer-Asian Research, 2019, 48( 3): 817- 834. |
24 | Guha A, Jain A, Pradhan K. Computation and physical explanation of the thermo-fluid-dynamics of natural convection around heated inclined plates with inclination varying from horizontal to vertical[J]. International Journal of Heat and Mass Transfer, 2019, 135: 1130- 1151. |
25 | Cheng H J, Lei H Y, Zeng L, et al. Experimental investigation of single-phase natural circulation in a mini-loop driven by heating and cooling fluids[J]. Experimental Thermal and Fluid Science, 2019, 103: 182- 190. |
[1] | 田洲, 焦栋, 王金强, 刘柏平. 序列分布导向的CGC催化乙烯与1-辛烯共聚过程建模[J]. 化工学报, 2020, 71(2): 651-659. |
[2] | 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574. |
[3] | 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898. |
[4] | 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632. |
[5] | 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878. |
[6] | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
[7] | 韩剑鹏,包永忠. 氯乙烯SET-DT悬浮聚合动力学和成粒过程的相互关系[J]. 化工学报, 2020, 71(2): 854-863. |
[8] | 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583. |
[9] | 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707. |
[10] | 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601. |
[11] | 任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486. |
[12] | 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613. |
[13] | 蒲兴群, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 聚合物阵列微针及其在透皮给药系统的应用[J]. 化工学报, 2020, 71(1): 43-53. |
[14] | 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348. |
[15] | 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375. |
|