化工学报 ›› 2020, Vol. 71 ›› Issue (2): 584-593.doi: 10.11949/0438-1157.20190812

• 流体力学与传递现象 • 上一篇    下一篇

聚合釜传热性能的实验研究及数值模拟

王修纲1,2,3(),吴裕凡1,2,郭潞阳1,2,路庆华3,叶晓峰1,2,曹育才1,2()   

  1. 1.上海化工研究院有限公司聚烯烃催化技术与高性能材料国家重点实验室,上海 200062
    2.上海化工研究院有限公司 上海市聚烯烃催化技术重点实验室,上海 200062
    3.上海交通大学化学化工学院,上海 200240
  • 收稿日期:2019-07-12 修回日期:2019-10-11 出版日期:2020-02-05 发布日期:2019-11-02
  • 通讯作者: 曹育才 E-mail:xgwang@sjtu.edu.cn;caoyc@srici.cn
  • 作者简介:王修纲(1986—),男,博士,工程师, xgwang@sjtu.edu.cn
  • 基金资助:
    上海市科委科技发展基金项目(16DZ2290700)

Experimental study and CFD simulation of heat transfer in polymerization reactor

Xiugang WANG1,2,3(),Yufan WU1,2,Luyang GUO1,2,Qinghua LU3,Xiaofeng YE1,2,Yucai CAO1,2()   

  1. 1.State Key Laboratory of Polyolefins and Catalysis, Shanghai Research Institute of Chemical Industry Co. , Ltd. , Shanghai 200062, China
    2.Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co. , Ltd. , Shanghai 200062, China
    3.School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-07-12 Revised:2019-10-11 Online:2020-02-05 Published:2019-11-02
  • Contact: Yucai CAO E-mail:xgwang@sjtu.edu.cn;caoyc@srici.cn

摘要:

基于CFD模拟与传热实验相结合的方法对5 L夹套聚合釜的传热性能进行研究。建立聚合釜的液固耦合稳态传热模型,获得釜内流体、夹套内流体及金属固体域内温度分布。开展传热实验对模拟结果进行验证,各对比点温度的最大相对误差在1%~5%范围内。通过模拟获得釜内外壁面传热系数及总传热系数,并关联出釜侧及夹套侧 Nu的经验式。结果表明:釜内流体温度分布方差始终在0.002以下,固体域内和传热边界层温度梯度较大,传热边界层厚度约3.8 mm;实验范围内,入口温度和反应放热量对釜内温度的影响显著,入口流速次之,搅拌转速影响最弱;夹套侧传热系数远小于釜侧传热系数,提高夹套侧传热系数是提升传热性能的关键;实验用聚合釜外表面散热量与内外温差呈正比,比例系数约为3.031 W·K -1

关键词: 计算流体力学, 搅拌容器, 传热, 数值模拟, 聚合, 流固耦合

Abstract:

The heat transfer performance of 5 L jacketed polymerizer was studied based on the combination of CFD simulation and heat transfer experiments. The liquid-solid coupled steady-state heat transfer model of the polymerizer was established to obtain the temperature distribution of the metal solid and the fluid in the reactor and the jacket. The CFD simulation results were validated by heat transfer experiments, and the maximum relative error of temperature at each test point was within 1%—5%. The convective heat transfer coefficients of the inner and outer walls of the reactor and the total heat transfer coefficients were obtained by simulation, and the empirical formulas of Nu on the reactor side and the jacket side were correlated. The results show that the variance of the fluid temperature distribution in the reactor is always below 0.002 in the three calculation domains. Among them, the temperature gradients in the solid domain and the heat transfer boundary layer are larger, and the thickness of the boundary layer is about 3.8 mm. In the experiment range, the inlet temperature and reaction exothermic have a significant influence on the reactor temperature, followed by the inlet flow rate, and the stirring speed has the weakest influence. The heat transfer coefficient on the jacket side is much smaller than the heat transfer coefficient on the side of the kettle. Increasing the heat transfer coefficient on the jacket side is the key to improving the heat transfer performance. The heat dissipation on the outer surface of the reactor is proportional to the temperature difference between the inside and outside, and the proportional coefficient is about 3.031 W·K -1.

Key words: CFD, stirred vessel, heat transfer, numerical simulation, polymerization, fluid-structure interaction

中图分类号: 

  • TQ 021.3

图1

实验聚合釜安装图"

图2

实验流程原理"

图3

物理模型与网格"

表1

网格无关检验"

Mesh numberTr /K Ql /(W·m -2)
92×10 455.3291.79
206×10 454.8690.53
393×10 454.7390.12
788×10 454.7290.09

表2

丙烯物性参数多项式系数"

多项式系数ρ/(kg·m -3) c p /(J·kg -1·K -1) μ /(mPa·s) λ/(W·m -1·K -1)
a5.4611×10 22.4810×10 31.0909×10 -19.9055×10 -2
b-1.14149.7721-1.2086×10 -3-3.1159×10 -4
c-1.2857×10 -21.8036×10 -22.8571×10 -6-4.4643×10 -7

表3

导热油物性参数多项式系数"

多项式系数ρ/(kg·m -3) c p /(J·kg -1·K -1) μ /(mPa·s) λ/(W·m -1·K -1)
a7.7717×10 22.0175×10 31.72501.3152×10 -1
b-7.0114×10 -13.7815-2.1955×10 -2-2.0679×10 -4
c-5.7114×10 -42.0930×10 -39.1518×10 -5-2.4187×10 -8

图4

聚合釜的速度分布"

表4

模拟方法的实验验证"

条件测温点实验值/℃模拟值/℃绝对误差/℃相对误差/%
Tji=87.64℃, uin=1.0 m·s -1, N=200 r·min -1, Qr=0 Tr83.0182.660.350.42
Tjo86.8286.760.060.07
Ta42.1243.98-1.86-4.42
Tb47.1248.50-1.38-2.93
②Tji =56.86℃, uin =1.5 m·s -1, N=200 r·min -1, Qr=0 Tr55.1154.730.380.69
Tjo56.5056.480.020.04
Ta32.1133.25-1.14-3.55
Tb36.8938.71-1.82-4.93
③Tji =65.66℃, uin =2.0 m·s -1, N=200 r·min -1, Qr=250 W Tr68.0267.600.420.62
Tjo65.6965.640.050.08
Ta36.8838.68-1.80-4.88
Tb42.3444.01-1.67-3.94

图5

聚合釜的温度分布"

图6

三计算域内温度分布方差"

图7

线上( X=0, Y=300 mm)温度分布及边界层厚度估计 "

图8

影响釜内温度的单因素分析"

表5

不同条件下传热系数模拟值与实验值"

uin/(m·s -1) N/(r·min -1) αo/(W·m -2·K -1) αi/(W·m -2·K -1) K-calc /(W·m -2·K -1) K-exp/(W·m -2·K -1) Error/%
1.020071.67255666.1162.385.64
1.520075.80255669.6171.96-3.38
2.020078.87255672.1978.09-8.17
4.010086.79132976.3376.66-0.44
1.540075.80491570.6573.57-4.13
1.080071.67945367.5561.469.01

图9

计算 K值与实验 K值对比 "

图10

表面散热量的线性拟合"

1 Tan N, Yu L, Tan Z, et al. Kinetics of the propylene polymerization with prepolymerization at high temperature using Ziegler-Natta catalyst[J]. Journal of Applied Polymer Science, 2015, 132( 15): 223- 227.
2 Bergstra M F, Weickert G. Semi-batch reactor for kinetic measurements of catalyzed olefin co-polymerizations in gas and slurry phase[J]. Chemical Engineering Science, 2006, 61( 15): 4909- 4918.
3 Alshaiban A, Soares J B P. Effect of hydrogen and external donor on propylene polymerization kinetics with a 4th-generation Ziegler-Natta catalyst[J]. Macromolecular Reaction Engineering, 2012, 6( 6): 265- 274.
4 Rishina L A, Kissin Y V, Lalayan S S, et al. Synthesis of atactic polypropylene: propylene polymerization reactions with TiCl 4-Al(C 2H 5) 2Cl/Mg(C 4H 9) 2 catalyst [J]. Journal of Applied Polymer Science, 2019, 136: 47692- 47700.
5 Kulyabin P S, Portnyagin I A, Tsarev A N, et al. Ansa-zirconocenes bearing 5-NR2-6-alkyl-4-hydrocarbyl-2-methylindenyl moieties: synthesis, structure, stereoselective polymerization of propylene[J]. Journal of Organometallic Chemistry, 2019, 892: 41- 50.
6 Pater J T M, Weickert G, Swaaij W P M V. Polymerization of liquid propylene with a 4th generation Ziegler-Natta catalyst—influence of temperature, hydrogen and monomer concentration and prepolymerization method on polymerization kinetics[J]. Chemical Engineering Science, 2003, 57( 16): 3461- 3477.
7 Regestein L, Giese H, Zavrel M, et al. Comparison of two methods for designing calorimeters using stirred tank reactors[J]. Biotechnology and Bioengineering, 2013, 110( 1): 180- 190.
8 Samson J J C, Weickert G, Heerze A E, et al. Liquid-phase polymerization of propylene with a highly active catalyst[J]. AIChE Journal, 1998, 44( 6): 1424- 1437.
9 Pimplapure M S, Zheng X, Loos J, et al. Low-rate propylene slurry polymerization: morphology and kinetics[J]. Macromolecular Rapid Communications, 2005, 26( 14): 1155- 1158.
10 Pater J T M, Weickert G, Swaaij W P M V. Polymerization of liquid propylene with a fourth‐generation Ziegler-Natta catalyst: influence of temperature, hydrogen, monomer concentration, and prepolymerization method on powder morphology[J]. Journal of Applied Polymer Science, 2003, 87( 9): 1421- 1435.
11 Pater J T M, Weickert G, Swaaij W P M V. Propene bulk polymerization kinetics: role of prepolymerization and hydrogen[J]. AIChE Journal, 2003, 49( 1): 180- 193.
12 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70( 2): 487- 495.
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70( 2): 487- 495
13 刘宝庆, 郑毅骏, 梁慧力, 等. 剪切变稀体系同心双轴搅拌釜内的气液分散模拟[J]. 化工学报, 2017, 68( 6): 2280- 2289.
Liu B Q, Zheng Y J, Liang H L, et al. CFD simulation on shear-thinning gas-liquid dispersion in coaxial mixer[J]. CIESC Journal, 2017, 68( 6): 2280- 2289.
14 Shi D P, Luo Z H, Zheng Z W. Numerical simulation of liquid-solid two-phase flow in a tubular loop polymerization reactor[J]. Powder Technology, 2010, 198( 1): 135- 143.
15 Gao X, Shi D P, Chen X Z, et al. Three-dimensional CFD model of the temperature field for a pilot-plant tubular loop polymerization reactor[J]. Powder Technology, 2010, 203( 3): 574- 590.
16 Xie L, Zhu L T, Luo Z H, et al. Multiscale modeling of mixing behavior in a 3D atom transfer radical copolymerization stirred-tank reactor[J]. Macromolecular Reaction Engineering, 2017, 1( 1): 1- 13.
17 Perarasu V T, Arivazhagan M, Sivashanmugam P. CFD modelling study of heat transfer in a coiled agitated vessel[J]. Progress in Computational Fluid Dynamics, 2014, 14( 3): 177- 188.
18 Perarasu T, Arivazhagan M, Sivashanmugam P. Experimental and CFD heat transfer studies of Al 2O 3-water nanofluid in a coiled agitated vessel equipped with propeller [J]. Chinese Journal of Chemical Engineering, 2013, 21( 11): 1232- 1243.
19 车圆圆, 周俊超, 毕纪葛, 等. 改进CBY桨搅拌釜内单相流体流动与传热特性研究[J]. 高校化学工程学报, 2014, 28( 3): 489- 496.
Che Y Y, Zhou J C, Bi J G, et al. Study on single phase fluid flow and heat-transfer performance in a stirred tank with an improved CBY hydrofoil impeller[J]. J . Chem. Eng. Chinese Univ., 2014, 28( 3): 489- 496.
20 毕纪葛, 潘万贵, 周俊超, 等. 四斜叶桨搅拌下釜内盘管非稳态对流传热过程的模拟和实验研究[J]. 高校化学工程学报, 2015, 29( 4): 780- 788.
Bi J G, Pan W G, Zhou J C, et al. CFD simulation and experimental study of heat transfer in a stirred tank equipped with a pitched-blade turbine and helical coils[J]. J . Chem. Eng. Chinese Univ., 2015, 29( 4): 780- 788.
21 张丽, 田密密, 吴剑华. 螺旋片强化的套管式换热器壳侧传热特性[J]. 高校化学工程学报, 2011, 25( 1): 24- 29.
Zhang L, Tian M M, Wu J H. Heat transfer performance of the shell side of double-pipe heat exchanger enhanced with helical fins[J]. J . Chem. Eng. Chinese Univ., 2011, 25( 1): 24- 29.
22 Delaplace G, Torrez C, Leuliet J C, et al. Experimental and CFD simulation of heat transfer to highly viscous fluids in an agitated vessel equipped with a non standard helical ribbon impeller[J]. Chemical Engineering Research and Design, 2001, 79( 8): 927- 937.
23 Rukruang A, Chimres N, Kaew-On J, et al. Experimental and numerical study on heat transfer and flow characteristics in an alternating cross-section flattened tube[J]. Heat Transfer-Asian Research, 2019, 48( 3): 817- 834.
24 Guha A, Jain A, Pradhan K. Computation and physical explanation of the thermo-fluid-dynamics of natural convection around heated inclined plates with inclination varying from horizontal to vertical[J]. International Journal of Heat and Mass Transfer, 2019, 135: 1130- 1151.
25 Cheng H J, Lei H Y, Zeng L, et al. Experimental investigation of single-phase natural circulation in a mini-loop driven by heating and cooling fluids[J]. Experimental Thermal and Fluid Science, 2019, 103: 182- 190.
[1] 田洲, 焦栋, 王金强, 刘柏平. 序列分布导向的CGC催化乙烯与1-辛烯共聚过程建模[J]. 化工学报, 2020, 71(2): 651-659.
[2] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[3] 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898.
[4] 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632.
[5] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[6] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[7] 韩剑鹏,包永忠. 氯乙烯SET-DT悬浮聚合动力学和成粒过程的相互关系[J]. 化工学报, 2020, 71(2): 854-863.
[8] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[9] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
[10] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[11] 任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
[12] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[13] 蒲兴群, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 聚合物阵列微针及其在透皮给药系统的应用[J]. 化工学报, 2020, 71(1): 43-53.
[14] 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[15] 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张晓冬, 付勇, 李志义, 赵宗昌. The Collapse Intensity of Cavities and the Concentration of Free Hydroxyl Radical Released in Cavitation Flow[J]. CIESC Journal, 2008, 16(4): 547 -551 .
[2] 陈江波, 刘春江, 袁希钢, 余国琮. CFD Simulation of Flow and Mass Transfer in Structured Packing Distillation Columns[J]. CIESC Journal, 2009, 17(3): 381 -388 .
[3] 杨加志, 赵成刚, 刘晓丽, 于俊伟, 孙东平, 唐卫华. Preparation of High Quality Indium Tin Oxide Film on a Microbial Cellulose Membrane Using Radio Frequency Magnetron Sputtering[J]. CIESC Journal, 2011, 19(2): 179 -184 .
[4] 张政,谢灼利. 流体-固体两相流的数值模拟 [J]. CIESC Journal, 2001, 52(1): 1 -12 .
[5] 祝远姣, 陈小鹏, 王琳琳, 钟华, 梁杰珍, 童张法. 脱氢枞酸在空气中的热分解动力学 [J]. 化工学报, 2008, 59(10): 2526 -2530 .
[6] 包木太, 王兵, 袁长忠, 李希明. 胜利油田沾3区块内源微生物室内模拟激活实验研究 [J]. 化工学报, 2008, 59(9): 2334 -2338 .
[7] 沈志鸿 ,陆婉珍. 硅油中旁接基团的测定 [J]. CIESC Journal, 1965, 16(2): 99 -108 .
[8] 李绍芬,高文新,廖晖. 内循环式无梯度反应器的研究 [J]. CIESC Journal, 1980, 31(1): 65 -72 .
[9] 余国琮,顾芳珍. 大型塔板的模拟与板效率的研究(Ⅱ)——二维定数混合池模型 [J]. CIESC Journal, 1981, 32(2): 97 -110 .
[10] 范庆荣,赵得禄,徐端夫,钱人元. 聚丙烯纺丝中纤维不均匀性的研究 [J]. CIESC Journal, 1981, 32(4): 359 -366 .