化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1898-1911.doi: 10.11949/0438-1157.20190799

• 过程安全 • 上一篇    下一篇

水下输气管道泄漏扩散特性模拟研究

王少雄(),李玉星(),刘翠伟,梁杰,李安琪,薛源   

  1. 中国石油大学(华东)山东省油气储运安全省级重点实验室,山东 青岛 266580
  • 收稿日期:2019-07-11 修回日期:2019-09-24 出版日期:2020-04-05 发布日期:2019-11-28
  • 通讯作者: 李玉星 E-mail:wsxupc@163.com;lyx13370809333@163.com
  • 作者简介:王少雄(1995—),男,硕士研究生,wsxupc@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0802104);山东省重点研发计划项目(2017GSF220007)

Numerical simulation on leakage and diffusion characteristics of underwater gas pipeline

Shaoxiong WANG(),Yuxing LI(),Cuiwei LIU,Jie LIANG,Anqi LI,Yuan XUE   

  1. Shandong Provincial Key Laboratory of Oil and Gas Storage and Transportation Security, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2019-07-11 Revised:2019-09-24 Online:2020-04-05 Published:2019-11-28
  • Contact: Yuxing LI E-mail:wsxupc@163.com;lyx13370809333@163.com

摘要:

建立了水下输气管道泄漏三维CFD数值模型,同时基于积分模型建立了预测数学模型,研究了不同泄漏速率和水深下气体在水体中扩散的速度、羽流半径以及上升到水面时形成泉涌高度的变化规律,并利用实验验证了两种模型的准确性,两种模型可以准确地模拟羽流特征参数的变化。结果表明:水下天然气管道泄漏扩散经历了初始阶段、充分发展阶段和表面流动阶段三个阶段,在气泡羽流上升过程中伴随着卷吸和紊动沸腾现象;羽流的径向速度近似呈高斯分布并且随着径向距离的增加逐渐降低;羽流的轴向速度随着水深的增加而降低,且在接近泄漏孔口的位置,轴线上羽流的速度急速衰减;随着气泡羽流紊动的发展,羽流半径逐渐向两侧发展并且随着水深近似呈线性增长。

关键词: 输气管道, 泄漏, 多相流, 气泡羽流, 扩散, 数值模拟

Abstract:

A three-dimensional CFD numerical model for the leakage of underwater gas pipelines is established. The variation of bubble plume velocity, plume radius and fountain height at different leakage rates and water depths are studied. The results show that the bubble plume has experienced the initial stage, the full development stage and the surface flow stage, accompanied by the phenomenon of entrainment and turbulent boiling. The plume radial velocity is approximately Gaussian distribution and decreases with the radial distance. The axial velocity of plume decreases with the increase of water depth, and the velocity of plume decreases rapidly at the position near the leakage hole. With the development of bubble plume turbulence, plume radius gradually develops to both sides and increases linearly with water depth. Compared with the integral model, although the CFD model is more complicated in calculation, but the predicted results are roughly consistent with the experiment, it is necessary to carry out experiments with high leakage flow rate under deep water conditions to determine the accurate empirical coefficient to further improve the calculation accuracy of the integral model.

Key words: underwater pipelines, leakage, multiphase flow, bubble plume, diffusion, numerical simulation

中图分类号: 

  • TE 832

图1

网格模型划分"

表1

网格划分方案"

方案网格数/个
167800
2376000
31029000

图2

不同数目网格下的羽流上升时间"

图3

作用在羽流上的力"

表2

推荐的经验参数"

参数范围推荐值
n1~CpCv1
α0.06~0.150.1285
λ0.6~1.00.8
vs/(m/s)0.1~0.40.35
γ1~21.5

图4

模型算法"

图5

水下管道气体泄漏实验系统1—空气压缩机;2—冷干机;3—过滤器;4,11—缓冲罐;5,10—质量流量计;6—针型阀;7,9—压力表;8—水槽;12—计算机;13—高速摄像机"

图6

羽流扩散过程"

图7

不同水深下的羽流扩散过程"

图8

不同水深下的羽流半径分布"

图9

不同水深下的气池扩散过程"

图10

不同水深下的气池半径随时间的变化曲线"

图11

不同水位高度处的羽流径向速度分布"

图12

不同泄漏速率下中线处的羽流轴向速度分布"

图13

不同泄漏速率下羽流半径分布"

图14

气体在水面形成的泉涌现象"

图15

水面溢散燃烧现象"

图16

不同泄漏速率下水面处羽流径向泉涌高度分布"

表3

积分模型计算的泉涌高度"

泄漏速率/(m3/h)泉涌高度hf/m平均初始泉涌高度hˉp/m最大泉涌高度hpmax/m
0.210.05080.10160.1575
0.370.07480.14960.2319
0.840.13050.26100.4046

图17

实验与模拟预测的泉涌高度对比"

1 张军, 臧晓刚, 张园春, 等. 水下管道向下泄漏的羽射流特性[J]. 化工学报, 2016, 67(12): 4969-4975.
Zhang J, Zang X G, Zhang Y C, et al. Dynamic characteristics of plume/jet from underwater pipe downward leakage[J]. CIESC Journal, 2016, 67(12): 4969-4975.
2 Li X H, Chen G M, Zhu H W. Gas dispersion and deflagration above sea from subsea release and its impact on offshore platform[J]. Ocean Engineering, 2018, 163: 157-168.
3 方娜, 陈国明, 朱红卫, 等. 海底管道泄漏事故统计分析[J]. 油气储运, 2014, 33(1): 99-103.
Fang N, Chen G M, Zhu H W, et al. Statistical analysis of leakage accidents of submarine pipeline[J]. Oil & Gas Storage and Transportation, 2014, 33(1): 99-103.
4 吴风林, Tsang G. 关于气泡羽流的研究[J]. 水动力学研究与进展, 1989, 4(1): 104-112.
Wu F L, Tsang G. Research on bubble plumes[J]. Chinese Journal of Hydrodynamics, 1989(1): 104-112.
5 梁杰, 李玉星, 刘翠伟, 等. 埋地输气管道泄漏特性实验研究[J]. 化工学报, 2019, 70(4): 1635-1643.
Liang J, Li Y X, Liu C W, et al. Experimental study on leakage characteristics of buried gas pipelines[J]. CIESC Journal, 2019, 70(4): 1635-1643.
6 刘海强. 天然气管道小孔泄漏扩散数值模拟与试验研究[D]. 北京: 中国石油大学(北京), 2010.
Liu H Q. Numerical simulation and experimental study of small leakage diffusion in natural gas pipelines[D]. Beijing: China University of Petroleum, 2010.
7 黄小美, 郭杨华, 彭世尼, 等. 室内天然气泄漏扩散数值模拟及试验验证[J]. 中国安全科学学报, 2012, 22(4): 27-31.
Huang X M, Guo Y H, Peng S N, et al. Numerical simulation and experimental verification of natural gas leakage diffusion in laboratory[J]. China Safety Science Journal, 2012, 22(4): 27-31.
8 Morton B R, Taylor G, Turner J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1956, 234(1196): 1-23.
9 Taylor G. The action of a surface current used as a breakwater[J]. Proceedings of the Royal Society of London, 1955, 231(1187): 466-478.
10 Turner J S. The starting plume in neutral surroundings[J]. Journal of Fluid Mechanics, 1962, 13(3): 356-372.
11 Ditmars J D, Cederwall K. Analysis of air-bubble plumes[J]. AIChE Journal, 1977, 23(4): 596-599.
12 Ditmars J D, Adams E, Bedford K W, et al. Performance evaluation of surface water transport and dispersion models[J]. Journal of Hydraulic Engineering, 1987, 113(8): 961-980.
13 Milgram J H, Burgess J J. Measurements of the surface flow above round bubble plumes[J]. Applied Ocean Research, 1984, 6(1): 40-44.
14 Milgram J H, Alt C J V, Burgess J. Experiments with scale models of oil collectors for subsea well blowouts[J]. Applied Ocean Research, 1983, 5(3): 120-128.
15 Billeter L, Fannelop T K. Gas concentration over an underwater gas release[J]. Atmospheric Environment, 1989, 23(8): 1683-1694.
16 Cloete S, Olsen J E, Skjetne P. CFD modeling of plume and free surface behavior resulting from a sub-sea gas release[J]. Applied Ocean Research, 2009, 31(3): 220-225.
17 Olsen J E, Skjetne P. Modelling of underwater bubble plumes and gas dissolution with an Eulerian-Lagrangian CFD model[J]. Applied Ocean Research, 2016, 59(3): 193-200.
18 Tessarolo L F, Innocentini V. Evaluation of entrainment formulations for liquid/gas plumes from underwater blowouts[J]. Journal of Geophysical Research Oceans, 2016, 121(7): 5530-5366.
19 Wu K, Cunningham S. Modelling subsea gas releases and resulting gas plumes using computational fluid dynamics[J]. Journal of Loss Prevention in the Process Industries, 2017, 49(3): 411-417.
20 李长俊, 刘刚. 穿越河道天然气管道泄漏数值模拟[J]. 世界科技研究与发展, 2016, 38(3): 564-568.
Li C J, Liu G. Numerical simulation of natural gas pipeline leakage across river[J]. World Sci-Tech R&D, 2016, 38(3): 564-568.
21 李新宏. 水深对海底管道泄漏水下气体扩散行为的影响研究[J]. 中国安全生产科学技术, 2018, 14(5): 17-22.
Li X H. Research on the influence of water depth on the underwater gas diffusion behavior of submarine pipeline leakage[J]. Journal of Safety Science and Technology, 2018, 14(5): 17-22.
22 李新宏, 陈国明, 朱红卫.基于欧拉-拉格朗日方法的水下气体泄漏扩散行为研究[J]. 中国石油大学学报, 2019, 43(1): 131-137.
Li X H, Chen G M, Zhu H W. Study on release and dispersion behavior of underwater gas based on Eulerian-Lagrangian approach[J]. Journal of China University of Petroleum, 2019, 43(1): 131-137.
23 张焕好, 郭则庆, 王瑞琦.水下超声速气体射流的初始流动特性研究[J]. 振动与冲击, 2019, 38(6): 88-93.
Zhang H H, Guo Z Q, Wang R Q. Initial flow characteristics of an underwater supersonic gas jet[J]. Journal of Vibration and Shock, 2019, 38(6): 88-93.
24 Topham D R. Hydrodynamics of an oil well blowout[J]. Applied Ocean Research, 1975, 15(5): 269-280.
25 Lees M, Fannelop T K. Concentration measurements above an underwater release of natural gas[J]. SPE Drilling Engineering, 1989, 4(2): 171-178.
26 王志刚, 孙克俐, 刘海欣. 关于水下管道气体泄漏的试验研究[J]. 港工技术, 2013, 50(1): 52-54.
Wang Z G, Sun K L, Liu H X. Experimental study on gas leakage of underwater pipelines[J]. Port Engineering Technology, 2013, 50(1): 52-54.
27 郭强, 施红辉, 王超. 水下超声速气体射流气液两相复杂流动研究[J]. 工程热物理学报, 2012, 33(5): 809-812.
Guo Q, Shi H H, Wang C. Study on gas-liquid complex flow induced by submerged supersonic gas jets[J]. Journal of Engineering Thermophysics, 2012, 33(5): 809-812.
28 王超, 汪剑锋, 施红辉. 超声速气体浸没射流的数值计算和实验[J]. 化工学报, 2014, 65(11): 4293-4300.
Wang C, Wang J F, Shi H H. Numerical simulation and experiments on submerged supersonic gas jets[J]. CIESC Journal, 2014, 65(11): 4293-4300.
29 王超, 施红辉, 汪剑锋. 液体中可压缩气体射流的瞬态特性[J]. 化工学报, 2016, 67(6): 2291-2299.
Wang C, Shi H H, Wang J F. Transient characteristics of compressible gas jet in liquid[J]. CIESC Journal, 2016, 67(6): 2291-2299.
30 施红辉, 汪剑锋, 陈帅. 水下超声速气体射流初期流场特性的实验研究[J]. 中国科学技术大学学报, 2014, 44(3): 233-237.
Shi H H, Wang J F, Chen S. Experimental study on flow characteristics at the initial injection stage of underwater supersonic gas jets[J]. Journal of University of Science and Technology of China, 2014, 44(3): 233-237.
31 李婷婷, 胡俊, 曹雪洁, 等. 环形喷管水下气体射流夹断过程[J]. 化工学报, 2017, 68(12): 4565-4575.
Li T T, Hu J, Cao X J, et al. Pinch-off process of underwater annular-nozzled gas jet[J]. CIESC Journal, 2017, 68(12): 4565-4575.
32 Laux H, Johansen S T. A CFD analysis of the air entrainment rate due to a plunging steel jet combining mathematical models for dispersed and separated multiphase flows[J]. Fluid Flow Phenomena in Metal Processing, 1999, 1(1): 1047-1054.
33 Levich V G. Physicochemical Hydrodynamics[M]. Englewood Cliffs, NJ: Prentice-Hall, 1962.
34 Friedl M J, Fannelop T K. Bubble plumes and their interaction with the water surface[J]. Applied Ocean Research, 2000, 22(2): 119-128.
[1] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[2] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[3] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[4] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[5] 李睿, 张以任, 陈杭, 路贵民, 于建国. 二元液滴自由碰撞聚并后的振荡行为研究[J]. 化工学报, 2020, 71(4): 1482-1490.
[6] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[7] 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
[8] 许峻, 范怡平, 钱筱婕, 闫子涵, 卢春喜. 催化裂化提升管进料段喷嘴射流运动-扩散特性的分析[J]. 化工学报, 2020, 71(4): 1450-1459.
[9] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[10] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[11] 董吉开, 杜文莉, 王冰, 许乔伊. 湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020, 71(3): 1163-1173.
[12] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[13] 付涛涛, 朱春英, 马友光. 微通道内卫星液滴生成机理与惯性分离机制[J]. 化工学报, 2020, 71(2): 451-458.
[14] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[15] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[2] 黄兴华,王启杰,陆震. 管壳式换热器壳程流动和传热的三维数值模拟 [J]. CIESC Journal, 2000, 51(3): 297 -302 .
[3] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[4] . 2013年 第64卷 第1期目 次[J]. 化工学报, 2013, 64(1): 0 .
[5] 赵德明, 李敏, 徐新华. 高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯[J]. 化工学报, 2013, 64(3): 1091 -1098 .
[6] 张弦, 罗才武, 黄登高, 李安, 刘娟娟, 晁自胜. 醛/氨反应合成吡啶碱机理[J]. 化工学报, 2013, 64(8): 2875 -2882 .
[7] 何大方, 吴健, 刘战剑, 沈丽明, 汪怀远, 暴宁钟. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888 -2894 .
[8] 张沁丹, 付涛涛, 朱春英, 马友光. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504 -511 .
[9] 赵金龙, 黄弘, 李聪, 王建军. 基于事件链的罐区定量风险评估[J]. 化工学报, 2016, 67(7): 3084 -3090 .
[10] 陈振涛, 武云, 徐春明. 零长柱技术用于分子筛晶内扩散的研究进展[J]. 化工学报, 2016, 67(8): 3170 -3178 .