化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1440-1449.doi: 10.11949/0438-1157.20190781

• 热力学 • 上一篇    下一篇

真空探针冷冻和复温性能实验测试及数值模拟

谭畯坤1,2(),刘玉东1,2(),耿世超1,2,陈兵1,2,童明伟1,2   

  1. 1. 重庆大学能源与动力工程学院,, 重庆 400044, China
    2.低品位能源利用技术及系统教育部重点实验室(重庆大学), 重庆 400044
  • 收稿日期:2019-07-09 修回日期:2019-10-12 出版日期:2020-04-05 发布日期:2019-11-02
  • 通讯作者: 刘玉东 E-mail:1548962812@qq.com;ydliu2000@163.com
  • 作者简介:谭畯坤(1993—),男,硕士研究生,1548962812@qq.com
  • 基金资助:
    国家自然科学基金项目(51276204)

Test and numerical simulation of freezing and rewarming performance of vacuum probe

Junkun TAN1,2(),Yudong LIU1,2(),Shichao GENG1,2,Bing CHEN1,2,Mingwei TONG1,2   

  1. 1.School of Energy and Power Engineering, Chongqing University, Chongqing 400044
    2.Key Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of Education (Chongqing University), Chongqing 400044, China
  • Received:2019-07-09 Revised:2019-10-12 Online:2020-04-05 Published:2019-11-02
  • Contact: Yudong LIU E-mail:1548962812@qq.com;ydliu2000@163.com

摘要:

针对现有的冷热复合治疗探针中存在的问题,设计了直径3 mm的真空探针,用电阻加热和真空层相结合的方法解决探针非工作段的低温问题,以液氮冷冻和电阻加热的方式实现探针的冷热交替过程。分别在空气、蒸馏水和离体猪肝中进行探针的性能测试实验。发现电加热与真空层结合可以提高探针非工作段的温度;在蒸馏水中探针形成轴向长度为3.6 cm,径向长度为1.8 cm的冰球;在离体猪肝中形成轴向冻结直径约为3.6 cm,化冻直径为1.2 cm的区域。使用数值计算的方法计算探针的有效治疗范围,形象直观地展示组织在冷冻和复温过程中的温度场分布,为临床手术提供数据支持。从整体效果看,探针有良好的冷冻和复温性能,促进冷热复合治疗的进一步发展。

关键词: 热力学性质, 生物医学工程, 真空探针, 肿瘤治疗, 数值模拟

Abstract:

A 3-mm-diameter vacuum cryoprobe was designed. Low temperature problem in non-working section of probe was solved by resistance heating and vacuum layer. The freezing and rewarming process of the vacuum cryoprobe was realized through liquid nitrogen and resistance heating, and the freezing and rewarming properties of the vacuum cryoprobe were studied in air, distilled water and isolated porcine liver. According to the temperature variation data of the vacuum probe s working section in the isolated pig liver, set the corresponding boundary conditions in the numerical simulation, and use the classical bio-heat transfer equation to calculate the temperature distribution of the vacuum probe during freezing and rewarming process in human tissues, which can better understand the performance of the designed vacuum probe. In air, firstly, the vacuum probe has same temperature that working section is -190℃ and non-working section is -100℃ at 0.2 MPa,0.25 MPa,0.3 MPa, but the cooling rate will increase with increasing pressure. Secondly, the vacuum layer outside the probe s non- working section can prevent heat transfer. Thirdly, the resistance heating method can increase the temperature of the vacuum cryoprobe. Resistance heating can make the temperature of the probe s non-working section within the acceptable range of the human body, and without damaging the human normal tissues. In distilled water, the probe s working section can form ice hockey with an axial length of 3.6 cm and a radial length of 1.8 cm at 600 s, and volume of ice hockey is 6.11 cm3. In vitro porcine liver, the freezing phenomenon can be clearly seen. The freezing temperature reaches -192.9℃ and rewarming temperature reaches -55℃ in working section, and average cooling rate is 128℃/min. At the end of the experiment, the axial frozen diameter and axial thawed diameter are 3.6 cm and 1.2 cm, respectively. In simulation, the influence heat sources on the temperature field of human tissues was analyzed. From the nephogram, the tissues form ice hockey and melt gradually. Without heat source, freezing effective area is ellipse which long axis is 12.4 mm at 600 s, while rewarming effective area is ellipse which long axis is 10.4 mm at 1400 s. If heat source is considered, whole tissue s temperature will increase during the freezing and rewarming process, and it has a great influence on rewarming process. From the overall effect, the probe has good freezing and rewarming properties, which promotes the further development of cold-heat compound therapy.

Key words: thermodynamic properties, biomedical engineering, vacuum cryoprobe, tumor therapy, numerical simulation

中图分类号: 

  • TH 775

图1

实验系统结构1—液氮罐;2—空气压缩机;3—低温电磁阀;4—真空探针;5—电磁阀;6—电源;7—真空泵;8—计算机;9—数据采集仪"

图2

真空探针内部结构"

图3

探针非工作段电阻加热链接方式"

表1

空气中实验条件"

实验条件第一组第二组第三组第四组
空气温度/℃18.518.518.518.5
探针真空层真空度/kPa90909070、80、90
液氮罐压力/MPa0.20、0.25、0.300.300.300.30
工作段加热功率/W0.30、0.68、1.20
非工作段加热功率/W0.22、0.50、0.69
实验持续时间/s600600600600

图4

热电偶在离体组织中的位置(单位: mm)"

图5

生物组织冷冻模型 (单位:mm)"

图6

探针表面温度"

图7

不同压力下探针工作段温度变化"

图8

不同压力下探针非工作段温度变化"

图9

探针工作段在蒸馏水中不同时刻形成冰球的形状"

图10

冷冻实验结束时冰球在空气中的形状"

图11

离体组织中温度变化"

图12

猪肝的冷冻和复温结果剖面(单位:mm)"

图13

冷冻过程温度云图/K"

图14

复温过程温度云图/K"

图15

数值计算过程中M、N、L检测点温度变化"

表2

冷冻过程影响区域"

时间/s有效区/mm冻结线/mm
1003.65
2007.29
3008.911
40010.512.9
50011.513
60012.415.8

表3

复温过程影响区域"

时间/s有效区下限(42℃) /mm有效区上限(45℃) /mm正常组织无损伤区 /mm
700000
8002.52.30.2
10004.43.80.6
12007.25.71.5
140010.482.4

图16

数值计算过程中检测点M在有无内热源情况下温度对比"

图17

探针非工作段在不同真空度条件下温度变化"

图18

工作段不同的加热功率对探针工作段的影响"

图19

非工作段不同的加热功率对探针非工作段的影响"

1 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
2 Trusheim J, Dunbar E, Battiste J, et al. A state-of-the-art review and guidelines for tumor treating fields treatment planning and patient follow-up in glioblastoma[J]. CNS Oncology, 2017, 6(1): 29-43.
3 Green D M, Jaffe N, Paed D. et al. The role of chemotherapy in the treatment of Wilms tumor[J]. Cancer, 1979, 44(1): 52-57.
4 Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the importance of dose and fractionation[J]. Frontiers in Oncology, 2014, 4(1): 1-12.
5 Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in brain tumor surgery for glioblastoma in adults[J]. Brain Sciences, 2017, 7(12): 166.
6 Pu Y, Zhou K, Jin C. et al. Effectiveness and safety of high-intensity focused ultrasound in treatment of hepatocellular carcinoma adjacent to large vessels[J]. Tumor, 2017, 37(5): 497-503.
7 Calin M A, Diaconeasa A, Savastru D. et al. Photosensitizers and light sources for photodynamic therapy of the Bowen s disease[J]. Archives of Dermatological Research, 2011, 303(3): 145-151.
8 Gage A A, Baust J. Mechanisms of tissue injury in cryosurgery[J]. Cryobiology, 1998, 37(3): 171-186.
9 Wessalowski R, Schneider D T, Mils O, et al. Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study[J]. The Lancet Oncology, 2013, 14(9): 843-852.
10 Bai J F, Liu P, Xu L X. et al. Recent advances in thermal treatment techniques and thermally induced immune responses against cancer[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5): 1497-1505.
11 Hajri A. Gene therapy for cancer treatment-state of the art[M]//Genetically Modified Organisms and Genetic Engineering in Research and Therapy. Karger Publishers, 2012: 86-102.
12 Pasquali P. A Short History of Cryosurgery[M]// Cryosurgery. Heidelberg, Berlin: Springer, 2015.
13 Clarke D M, Baust J M, van Buskirk R G, et al. Addition of anticancer agents enhances freezing-induced prostate cancer cell death: implications of mitochondrial involvement[J]. Cryobiology, 2004, 49(1): 45-61.
14 Gowardhan B, Thomas B, Asterling S, et al. Cryosurgery for prostate cancer—experience with third-generation cryosurgery and novel developments in the field[J]. European Urology Supplements, 2007, 6(8): 516-520.
15 Tarkowski R, Rzaca M. Cryosurgery in the treatment of women with breast cancer—a review[J]. Gland Surgery, 2014, 3(2): 88-93.
16 Atanackovic D, Pollok K, Faltz C. et al. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naive/memory T-cell subtypes[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2006, 290(3): R585-R594.
17 Sindram D, Lau K N, Martinie J B, et al. Hepatic tumor ablation[J]. Surg. Clin. North Am., 2010, 90(4): 863-876.
18 Kuzmenko A P, Todor I N, Mosienko V S. The influence of combined application of cryosurgery and hyperthermia on the tumor process in experiment[J]. Eksperimentalnaya Onkologiya, 1990, 12(2): 60-61.
19 Sun J, Zhang A, Xu L X. Evaluation of alternate cooling and heating for tumor treatment[J]. International Journal of Heat and Mass Transfer, 2008, 51(23/24): 5478-5485.
20 Zhang J R. Endocare targeted cryoablation therapy[J]. Journal of Biomedical Engineering Research, 2005, 24(2): 128-132.
21 Hewitt P M, Zhao J, Akhter J, et al. A comparative laboratory study of liquid nitrogen and argon gas cryosurgery systems[J]. Cryobiology, 1997, 35(4): 303-308.
22 闫井夫, 周一欣, 邓中山, 等. 自制冷热刀医疗设备靶向治疗肿瘤的性能实验[J]. 中国组织工程研究与临床康复, 2007, 11(22): 4325-4328.
Yan J F, Zhou Y X, Deng Z S, et al. Performance of self-made cryosurgical and hyperthermia equipment for targeted tumor treatment[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11(22): 4325-4328.
23 苏颖颖, 常兆华, 王成焘. 新型多刀肿瘤超低温冷冻治疗设备的研制及性能实验[J]. 上海交通大学学报, 2009, 43(4): 648-652
Su Y Y, Chang Z H, Wang C T. Development and experiments of an innovative multiprobe cryosurgical device[J]. Journal of Shanghai Jiao Tong University, 2009, 43(4): 648-652.
24 Yan J, Tong M W, Xu G C, et al. Basal experiment on vacuum liquid CO2 cryoprobe[J]. Journal of Central South University of Technology, 2006, 13: 102-104.
25 Zhao X, Chua K J. Regulating the cryo-freezing region of biological tissue with a controlled thermal device[J]. Medical Engineering & Physics, 2014, 36(3): 325-334.
26 Cohen J K, Miller R J. Thermal protection of urethra during cryosurgery of prostate[J]. Cryobiology, 1994, 31(3): 313-316.
27 Bischof J C, Merry N, Hulbert J. Rectal protection during prostate cryosurgery: design and characterization of an insulating probe[J]. Cryobiology, 1997, 34(1): 80-92.
28 Rabin Y, Lung D C, Stahovich T F. Computerized planning of cryosurgery using cryoprobes and cryoheaters[J]. Technology in Cancer Research & Treatment, 2004, 3(3): 229-243.
29 Rabin Y, Stahovich T F. Cryoheater as a means of cryosurgery control[J]. Physics in Medicine & Biology, 2003, 48(5): 619.
30 Rabin Y, Stahovich T F. The thermal effect of urethral warming during cryosurgery[J]. CryoLetters, 2002, 23(6): 361-374.
31 Rabin Y. Key issues in bioheat transfer simulations for the application of cryosurgery planning[J]. Cryobiology, 2008, 56(3): 248-250.
32 Zhao G, Luo D W, Liu Z F, et al. Comparative study of the cryosurgical processes with two different cryosurgical systems: the endocare cryoprobe system versus the novel combined cryosurgery and hyperthermia system[J]. Latin American Applied Research, 2007, 37(3): 215-222.
33 Zhao G, Zhang H F, Guo X J, et al. Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery[J]. Medical Engineering & Physics, 2007, 29(2): 205-215.
34 Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1998, 85(1): 5-34.
35 Kengne E, Lakhssassi A. Bioheat transfer problem for one-dimensional spherical biological tissues[J]. Mathematical Biosciences, 2015, 269: 1-9.
36 Mochnacki B, Majchrzak E. Numerical model of thermal interactions between cylindrical cryoprobe and biological tissue using the dual-phase lag equation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1-10.
37 Chua K J. Fundamental experiments and numerical investigation of cryo-freezing incorporating vascular network with enhanced nano-freezing[J]. International Journal of Thermal Sciences, 2013, 70: 17-31.
38 Nicolajsen H, Hvidt A. Phase behavior of the system trehalose-NaCl-water[J]. Cryobiology, 1994, 31(2): 199-205.
39 Davies C R, Saidel G M, Harasaki H. Sensitivity analysis of one-dimensional heat transfer in tissue with temperature-dependent perfusion[J]. Journal of Biomechanical Engineering, 1997, 119(1): 77-80.
40 Rai K N, Rai S K. Heat transfer inside the tissues with a supplying vessel for the case when metabolic heat generation and blood perfusion are temperature dependent[J]. Heat and Mass Transfer, 1999, 35(4): 345-350.
41 Chua K J. Fundamental experiments and numerical investigation of cryo-freezing incorporating vascular network with enhanced nano-freezing[J]. International Journal of Thermal Sciences, 2013, 70: 17-31.
42 Toner M, Cravalho E G, Stachecki J, et al. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential[J]. Biophysical Journal, 1993, 64(6): 1908-1921.
43 Wang H, Zhang S Z, Chen G M, et al. Experimental study on a cryoprobe utilizing throttling of high pressure argon[J]. Cryogenics, 2014, (1): 22-26.
44 Tian H Y, Wang H, Zhou Y, et al. Measurement and analysis of operation performance of the“endocare”cryoprobe system[J]. Space Medicine and Medical Engineering, 2003, 16(1): 60-63.
45 Seifert J K, Gerharz C D, Mattes F, et al. A pig model of hepatic cryotherapy. In vivo temperature distribution during freezing and histopathological changes[J]. Cryobiology, 2003, 47(3): 214-226.
46 Hanai A, Yang W L, Ravikumar T S. Induction of apoptosis in human colon carcinoma cells HT29 by sublethal cryo-injury: mediation by cytochrome C release[J]. International Journal of Cancer, 2001, 93(4): 526-533.
47 Tschoep-Lechner K E, Milani V, Berger F, et al. Gemcitabine and cisplatin combined with regional hyperthermia as second-line treatment in patients with gemcitabine-refractory advanced pancreatic cancer[J]. International Journal of Hyperthermia, 2013, 29(1): 8-16.
48 Bhayani K R, Rajwade J M, Paknikar K M. Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response[J]. Nanotechnology, 2012, 24(1): 015102.
[1] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[2] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[3] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[4] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[5] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[6] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[7] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[8] 赵文英, 李文文, 孙晓岩, 曹晓荣, 项曙光. 基于PR立方型状态方程普遍化温度函数的研究与评价[J]. 化工学报, 2020, 71(3): 1234-1245.
[9] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[10] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[11] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[12] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[13] 蒲兴群, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 聚合物阵列微针及其在透皮给药系统的应用[J]. 化工学报, 2020, 71(1): 43-53.
[14] 吴杰, 李嘉辉, 于燕梅, 于养信. 第Ⅲ族元素磷化物热力学性质理论研究[J]. 化工学报, 2020, 71(1): 192-199.
[15] 李涛, 沙娇, 赵瑞, 张鹏帅, 刘士琪, 李玉, 任保增. 双季戊四醇在3种混合溶剂中的固-液相平衡[J]. 化工学报, 2020, 71(1): 245-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王涛, 张影, 任晓玲. Biphenyl Bis[(π-cyclopentadienyl)iron]Dication as an Efficient Cationic Photoinitiator for Epoxy Polymerization[J]. CIESC Journal, 2008, 16(5): 819 -822 .
[2] 刘少友, 陆建平, 冯庆革, 唐文华. Effect of Ethanol on Synthesis and Electrochemical Property of Mesoporous Al-doped Titanium Dioxide via Solid-state Reaction [J]. CIESC Journal, 2011, 19(4): 674 -681 .
[3] 蒋群,梅乐和,姚善泾. 有机相微生物活细胞催化羰基不对称还原反应的研究进展 [J]. CIESC Journal, 2000, 51(S1): 194 -198 .
[4] 余国琮,杨志才. 精密精馏不稳态开工过程的研究 [J]. CIESC Journal, 1980, 31(1): 1 -10 .
[5] 卜令习,鲁杰,杨瑞丰,殷腾飞,周景辉. 紫外-可见光谱法测定黑液中木素含量 [J]. CIESC Journal, 2010, 61(12): 3266 -3271 .
[6] 麻明友.

聚 (β-烷氧基)对萘乙炔的超声合成

[J]. CIESC Journal, 2007, 58(8): 2144 -2148 .
[7] 陈力,张远谋. 氯化钾水溶液中介稳区的研究 [J]. CIESC Journal, 1983, 34(3): 257 -263 .
[8] 季铁军;罗固源;王丹云;许晓毅;朱亮.

螺旋升流式反应器系统较长泥龄时运行效果及其流态释因

[J]. CIESC Journal, 2007, 58(10): 2613 -2618 .
[9] 冯耀声,吴国宏,李昌圣,陈杰,顾瑾,王正平. 二氟氯甲烷和二氯氟甲烷的汽液平衡 [J]. CIESC Journal, 1985, 36(1): 93 -99 .
[10] 石宪章;申长雨;赵振峰 .

注塑冷却分析模内复膜数学模型建模

[J]. CIESC Journal, 2006, 57(1): 175 -179 .