化工学报 ›› 2020, Vol. 71 ›› Issue (2): 698-707.doi: 10.11949/0438-1157.20190771
Guihua HU1,2(),Zhencheng YE1,2,Wenli DU1,2(
)
摘要:
乙烯裂解炉内复杂物理化学过程耦合模拟与优化能够满足乙烯装置对高效率、低污染和低成本的设计和操作要求,对提高乙烯工业的竞争力具有重要意义。针对简单燃烧机理难以准确预测炉膛燃烧生成NOx浓度分布的弊端,提出了在裂解炉使用更准确的简化GRI-Mesh 3.0机理结合涡耗散概念(EDC)模型的方法,并对Sandia Flame D的燃烧过程进行计算流体力学(CFD)模拟,验证了此耦合模型的可靠性。在已建立的燃烧模型的基础上,研究了助燃空气对降低裂解炉NO排放的影响,结果表明:在满足裂解炉热效率的情况下,空气预热温度为300~600 K、过量空气系数为1.1时降低NO的效果最佳。
中图分类号:
1 | 王菁. 大型燃气乙烯裂解炉燃烧过程的模拟研究[D]. 天津: 天津大学, 2010. |
Wang J. The simulation of the combustion process for the large-scale ethylene cracking furnace [D]. Tianjin: Tianjin University, 2010. | |
2 | 李昌力, 李进锋. 乙烯裂解炉污染物及减排技术[J].石油化工设备技术, 2013, 34(1): 51-55. |
Li C L, Li J F. Pollutants and emission reduction technology of ethylene cracking furnace [J]. Petro-Chemical Equipment Technology, 2013, 34(1): 51-55. | |
3 | 王国清, 周先锋, 石莹, 等. 乙烯裂解炉辐射段技术的研究进展及工业应用[J]. 中国科学: 化学, 2014, 44(11): 1714-1722. |
Wang G Q, Zhou X F, Shi Y, et al. Research progress and industrial application of radiant section technology of ethylene cracking furnace [J]. Scientia Sinica Chimica, 2014, 44(11): 1714-1722. | |
4 | Heynderickx G J, Oprins A J M, Marin G B, et al. Three-dimensional flow patterns in cracking furnaces with long-flame burners [J]. AIChE J., 2001, 47 (2): 388-400. |
5 | 刘时涛, 王宏刚, 钱锋, 等. SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J]. 化工学报, 2011, 62(5): 1308-1317. |
Liu S T, Wang H G, Qian F, et al. Coupled simulation of combustion with heat transfer and cracking reaction in SL-Ⅱ industrial ethylene pyrolyzer [J]. CIESC Journal, 2011, 62(5): 1308-1317. | |
6 | Hu G H, Wang H G, Qian F. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces [J]. Chemical Engineering Science, 2011, 66: 1600-1611. |
7 | Stefanidis G D, Merci B, Heynderickx G J, et al. CFD simulations of steam cracking furnaces using detailed combustion mechanisms [J]. Computers & Chemical Engineering, 2006, 30(4): 635-649. |
8 | Lu T, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations [J]. Progress in Energy and Combustion Science, 2009, 35: 192-215. |
9 | Hassan G, Pourkashanian M, Ingham D, et al. Predictions of CO and NOx emissions from steam cracking furnaces using GR12.11 detailed reaction mechanism—a CFD investigation [J]. Computers & Chemical Engineering, 2013, 58(45): 68-83. |
10 | Reyniers P A, Schietekat C M, van Cauwenberge D J, et al. Necessity and feasibility of 3D simulations of steam cracking reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54: 12270-12282. |
11 | Hewson J C, Bollig M. Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames [J]. Symposium (International) on Combustion, 1996, 2: 2171-2179. |
12 | Stefanidis G D, Heynderickx G J, Marin G B. Development of reduced combustion mechanisms for premixed flame modeling in steam cracking furnaces with emphasis on NO emission [J]. Energy & Fuels, 2006, 20 (1): 103-113. |
13 | Tang Q, Denison M, Adams B, et al. Towards comprehensive computational fluid dynamics modeling of pyrolysis furnaces with next generation low-NOx burners using finite-rate chemistry [J]. Proceedings of the Combustion Institute, 2009, 32: 2649- 2657. |
14 | 郑清平, 张惠明, 邓玉龙. 压燃式天然气发动机燃烧过程CFD模拟计算中的若干问题 [J]. 燃烧科学与技术, 2006, 12(4): 345-352. |
Zheng Q P, Zhang H M, Deng Y L. Some problems occurred in numerical simulation of combustion process in a compressed ignition natural gas engine [J]. Journal of Combustion Science and Technology, 2006, 12(4): 345-352. | |
15 | 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型中的影响分析[J].化工学报, 2019, 70(2): 450-459. |
Ni C Z, Du W L, Hu G H. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459. | |
16 | Hu G H, Schietekat C M, Zhang Y, et al. Impact of radiation models in coupled simulations of steam cracking furnaces and reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2453- 2465 |
17 | Denison M K, Webb B W. Spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers [J]. Journal of Heat Transfer, Transactions ASME, 1993, 115(4): 1004-1012. |
18 | Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [C]//16th International Combustion Symposium, The Combustion Institute, Pittsburgh, 1976: 719-729. |
19 | Magnussen B F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow [C]//19th Aerospace Science Meeting, American Institute of Aeronautics and Astronautics, St. Louis, Missouri, USA, 1981. |
20 | Gran I R, Magnussen B F. A numerical study of a bluff-body stabilized diffusion flame(2): Influence of combustion modeling and finite-rate chemistry [J]. Combustion Science and Technology, 1996, 119(1): 191-217. |
21 | Chen Q. Comparison of different k-ε models for indoor air flow computations [J]. Numerical Heat Transfer, Part B., 1995, 28: 353-369. |
22 | 黄山. 新型燃气快速热水器燃烧过程的数值模拟和实验研究[D]. 重庆: 重庆大学, 2006. |
Huang S. Numerical simulation and experimental studies on combustion process of the novel gas instantaneous water heater [D]. Chongqing: Chongqing University, 2006. | |
23 | Barlow R, Frank J. Piloted CH4/air flames C, D, E and F - release2.1[EB/OL]. [2007-07-15]. http: //. |
24 | Fluent, ANSYS. Gambit 2.3 user’s guide [Z]. ANSYS Inc.Lebanon, NH, USA, 2006. |
25 | Fluent, ANSYS. ANSYS FLUENT user’s guide, release 14.0 [Z]. ANSYS Inc.Canonsburg, PA, USA, 2011. |
26 | Sandia/TUD piloted CH4/air jet flames [EB/OL]. [2003-01]. http: //. |
27 | 张建, 李金科. 裂解炉NOx抑制技术[J]. 乙烯工业, 2013, 25(4): 40-43. |
Zhang J, Li J K. NOx suppression technology for cracking furnace [J]. Ethylene Industry, 2013, 25(4): 40-43. | |
28 | 张昆. 大庆乙烯裂解炉热效率分析与优化[J]. 江西化工, 2015, 2(2): 17-20. |
Zhang K. The analysis and optimization of Daqing ethylene cracking furnace thermal efficiency [J]. Jiangxi Chemical Industry, 2015, 2(2): 17-20. | |
29 | 王鹏. 多燃料燃气锅炉燃烧调整与运行优化[D]. 长沙: 长沙理工大学, 2015. |
Wang P. More fuel gas boiler combustion adjustment and operation optimization [D]. Changsha: Changsha University of Science & Technology, 2015. | |
30 | Kee R J, Rupley F M, Miller J A, et al. CHEMKIN Release 4.0[Z]. Reaction Design Inc.San Diego, CA, 2004. |
31 | Habibi A, Merci B, Heynderickx G J. Impact of radiation models in CFD simulations of steam cracking furnaces[J]. Comput. Chem. Eng., 2007, 31: 1389-1406. |
32 | 申东发, 王国清, 刘俊杰, 等. 利用详细燃烧模型对裂解炉二维模型富氧燃烧过程进行数值模拟[J]. 石油化工, 2016, 45(6): 656-663. |
Shen D F, Wang G Q, Liu J J, et al. 2D numerical simulation of oxygen-enriched combustion process in cracking furnace using detailed combustion model [J].Petrochemical Technology, 2016, 45(6): 656-663. |
[1] | 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593. |
[2] | 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613. |
[3] | 许于, 陈怡沁, 周静红, 隋志军, 周兴贵. LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830. |
[4] | 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574. |
[5] | 邢瑞, 江南, 刘冰, 安亚雄, 汪亚燕, 张东辉. 基于MPC控制技术优化VPSA制氧工艺的模拟[J]. 化工学报, 2020, 71(2): 669-679. |
[6] | 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583. |
[7] | 常诚, 冯连芳, 顾雪萍, 陈曦, 张才亮. 基于分子量分布指标的聚酯生产过程模拟方法[J]. 化工学报, 2020, 71(2): 708-714. |
[8] | 彭雪, 芦琛璘, 卢滇楠. 氧气和一氧化碳在人血红蛋白迁移过程研究[J]. 化工学报, 2020, 71(2): 724-735. |
[9] | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
[10] | 张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353. |
[11] | 周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165. |
[12] | 潘海华, 唐睿康. 生物矿化及仿生矿化中的信息传递和转化[J]. 化工学报, 2020, 71(1): 68-80. |
[13] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[14] | 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154. |
[15] | 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160. |
|