化工学报 ›› 2020, Vol. 71 ›› Issue (2): 698-707.doi: 10.11949/0438-1157.20190771

• 过程系统工程 • 上一篇    下一篇

助燃空气对乙烯裂解炉NOx排放的影响

胡贵华1,2(),叶贞成1,2,杜文莉1,2()   

  1. 1.华东理工大学信息学科与工程学院,上海 200237
    2.化学工程联合国家重点实验室(华东理工大学),上海 200237
  • 收稿日期:2019-07-05 修回日期:2019-09-23 出版日期:2020-02-05 发布日期:2019-11-28
  • 通讯作者: 杜文莉 E-mail:huguihua@ecust.edu.cn;wldu@ecust.edu.cn
  • 作者简介:胡贵华(1974—),男,博士,副研究员,huguihua@ecust.edu.cn
  • 基金资助:
    国家杰出青年科学基金项目(61725301);中央高校基本科研业务费专项资金(222201917006);上海市自然科学基金项目(17ZR1406800);国家自然科学基金重点项目(61533003)

Effect of combustion-supporting air on NOx emission of ethylene cracking furnace

Guihua HU1,2(),Zhencheng YE1,2,Wenli DU1,2()   

  1. 1.School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2019-07-05 Revised:2019-09-23 Online:2020-02-05 Published:2019-11-28
  • Contact: Wenli DU E-mail:huguihua@ecust.edu.cn;wldu@ecust.edu.cn

摘要:

乙烯裂解炉内复杂物理化学过程耦合模拟与优化能够满足乙烯装置对高效率、低污染和低成本的设计和操作要求,对提高乙烯工业的竞争力具有重要意义。针对简单燃烧机理难以准确预测炉膛燃烧生成NOx浓度分布的弊端,提出了在裂解炉使用更准确的简化GRI-Mesh 3.0机理结合涡耗散概念(EDC)模型的方法,并对Sandia Flame D的燃烧过程进行计算流体力学(CFD)模拟,验证了此耦合模型的可靠性。在已建立的燃烧模型的基础上,研究了助燃空气对降低裂解炉NO排放的影响,结果表明:在满足裂解炉热效率的情况下,空气预热温度为300~600 K、过量空气系数为1.1时降低NO的效果最佳。

关键词: 乙烯裂解炉, 模拟, 优化, 简化GRI- Mesh 3.0机理, 计算流体力学, 助燃空气, NOx排放

Abstract:

Coupled simulation and optimization of complex physical and chemical processes in ethylene cracking furnace can meet the demand for design and operation of high efficiency, low pollution and low cost in ethylene plant. Therefore, it has great significance for improving the competitiveness of the ethylene industry. Aiming at the disadvantage of simple combustion mechanism that it is difficult to accurately predict the distribution of NOx concentration produced by furnace combustion, are reduced GRI-Mesh 3.0 mechanism combined with eddy dissipation concept (EDC) model for cracking furnace was proposed. The combustion process of Sandia Flame D was simulated and the reliability of the coupled model was verified. Based on the established combustion model, the effect of combustion-supporting air on reducing NO emission of cracking furnace was studied. The results show that the best effect of reducing NO is when the air preheating temperature is 300—600 K and the excess air coefficient is 1.1 when the thermal efficiency of the cracking furnace is satisfied.

Key words: ethylene cracking furnace, simulation, optimization, reduced GRI-Mesh 3.0 mechanism, computational fluid dynamics, combustion-supporting air, NOx emission

中图分类号: 

  • TQ 021.1

图1

Sandia Flame D燃烧器结构示意图"

表1

Flame D入口速度和组分条件"

结构直径/长×宽/mm温度/K速度/(m/s)组分/(质量分数)
CH4O2N2CO2H2O
主火焰7.229449.60.1560.1970.64700
值班火焰18.2188011.400.0540.7420.110.094
空气伴流300×3002910.900.230.7700

图2

Flame D模型网格"

图3

Flame D燃烧速度与温度云图"

图4

Flame D温度分布模拟值与实验数据比较"

图5

Flame D组分分布云图"

图6

NO质量分数分布"

表2

裂解炉炉膛结构尺寸和操作条件"

Firebox structureFiring conditionFuel composition/%(mass)
Length (x-direction)/m

Width

(y-direction)/m

Height

(z-direction) /m

Number of floor burnersNumber of wall burnersFuel gas ?ow rate in bottom/(kg/s)Fuel gas ?ow rate in side/(kg/s)CH4H2COC2H4
13.62.5712.0616321.24390.302898.2371.360.3070.096

图7

不同空气预热温度下燃烧器上方烟气平均温度和NO分布规律"

图8

不同空气预热温度下的NO摩尔生成率和质量流率"

表3

不同过量空气系数下的入口条件"

α

底部烧嘴燃料

流量/(kg/s)

底部风门入口

流量/(kg/s)

侧壁烧嘴总

流量/(kg/s)

1.050.093751.700361.44857
1.070.093751.732741.47472
1.090.093751.765131.50087
1.100.093751.781321.51395
1.130.093751.829911.55317
1.160.093751.878491.59240
1.200.093751.943261.64470

表4

不同过量空气系数下的模拟结果"

α反应净生成热/(J/(cm3?s))CH4摩尔分数温度/KNO摩尔生成率/(mol/(cm3?s))
1.0536.091.59×10-52225.533.03×10-7
1.0736.051.60×10-52218.582.89×10-7
1.0935.931.62×10-52211.422.75×10-7
1.135.881.63×10-52207.032.68×10-7
1.1335.561.63×10-52203.822.62×10-7
1.1635.341.65×10-52197.882.51×10-7
1.235.021.66×10-52192.882.42×10-7

图9

不同过量空气系数下的NO摩尔生成率和反应净生成热"

图10

两种工况下沿炉膛高度方向NO摩尔分数分布"

图11

两种工况下沿炉膛高度截面的平均NO摩尔分数分布"

图12

两种工况下炉膛出口处的NO质量分数分布"

1 王菁. 大型燃气乙烯裂解炉燃烧过程的模拟研究[D]. 天津: 天津大学, 2010.
Wang J. The simulation of the combustion process for the large-scale ethylene cracking furnace [D]. Tianjin: Tianjin University, 2010.
2 李昌力, 李进锋. 乙烯裂解炉污染物及减排技术[J].石油化工设备技术, 2013, 34(1): 51-55.
Li C L, Li J F. Pollutants and emission reduction technology of ethylene cracking furnace [J]. Petro-Chemical Equipment Technology, 2013, 34(1): 51-55.
3 王国清, 周先锋, 石莹, 等. 乙烯裂解炉辐射段技术的研究进展及工业应用[J]. 中国科学: 化学, 2014, 44(11): 1714-1722.
Wang G Q, Zhou X F, Shi Y, et al. Research progress and industrial application of radiant section technology of ethylene cracking furnace [J]. Scientia Sinica Chimica, 2014, 44(11): 1714-1722.
4 Heynderickx G J, Oprins A J M, Marin G B, et al. Three-dimensional flow patterns in cracking furnaces with long-flame burners [J]. AIChE J., 2001, 47 (2): 388-400.
5 刘时涛, 王宏刚, 钱锋, 等. SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J]. 化工学报, 2011, 62(5): 1308-1317.
Liu S T, Wang H G, Qian F, et al. Coupled simulation of combustion with heat transfer and cracking reaction in SL-Ⅱ industrial ethylene pyrolyzer [J]. CIESC Journal, 2011, 62(5): 1308-1317.
6 Hu G H, Wang H G, Qian F. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces [J]. Chemical Engineering Science, 2011, 66: 1600-1611.
7 Stefanidis G D, Merci B, Heynderickx G J, et al. CFD simulations of steam cracking furnaces using detailed combustion mechanisms [J]. Computers & Chemical Engineering, 2006, 30(4): 635-649.
8 Lu T, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations [J]. Progress in Energy and Combustion Science, 2009, 35: 192-215.
9 Hassan G, Pourkashanian M, Ingham D, et al. Predictions of CO and NOx emissions from steam cracking furnaces using GR12.11 detailed reaction mechanism—a CFD investigation [J]. Computers & Chemical Engineering, 2013, 58(45): 68-83.
10 Reyniers P A, Schietekat C M, van Cauwenberge D J, et al. Necessity and feasibility of 3D simulations of steam cracking reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54: 12270-12282.
11 Hewson J C, Bollig M. Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames [J]. Symposium (International) on Combustion, 1996, 2: 2171-2179.
12 Stefanidis G D, Heynderickx G J, Marin G B. Development of reduced combustion mechanisms for premixed flame modeling in steam cracking furnaces with emphasis on NO emission [J]. Energy & Fuels, 2006, 20 (1): 103-113.
13 Tang Q, Denison M, Adams B, et al. Towards comprehensive computational fluid dynamics modeling of pyrolysis furnaces with next generation low-NOx burners using finite-rate chemistry [J]. Proceedings of the Combustion Institute, 2009, 32: 2649- 2657.
14 郑清平, 张惠明, 邓玉龙. 压燃式天然气发动机燃烧过程CFD模拟计算中的若干问题 [J]. 燃烧科学与技术, 2006, 12(4): 345-352.
Zheng Q P, Zhang H M, Deng Y L. Some problems occurred in numerical simulation of combustion process in a compressed ignition natural gas engine [J]. Journal of Combustion Science and Technology, 2006, 12(4): 345-352.
15 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型中的影响分析[J].化工学报, 2019, 70(2): 450-459.
Ni C Z, Du W L, Hu G H. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
16 Hu G H, Schietekat C M, Zhang Y, et al. Impact of radiation models in coupled simulations of steam cracking furnaces and reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2453- 2465
17 Denison M K, Webb B W. Spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers [J]. Journal of Heat Transfer, Transactions ASME, 1993, 115(4): 1004-1012.
18 Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [C]//16th International Combustion Symposium, The Combustion Institute, Pittsburgh, 1976: 719-729.
19 Magnussen B F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow [C]//19th Aerospace Science Meeting, American Institute of Aeronautics and Astronautics, St. Louis, Missouri, USA, 1981.
20 Gran I R, Magnussen B F. A numerical study of a bluff-body stabilized diffusion flame(2): Influence of combustion modeling and finite-rate chemistry [J]. Combustion Science and Technology, 1996, 119(1): 191-217.
21 Chen Q. Comparison of different k-ε models for indoor air flow computations [J]. Numerical Heat Transfer, Part B., 1995, 28: 353-369.
22 黄山. 新型燃气快速热水器燃烧过程的数值模拟和实验研究[D]. 重庆: 重庆大学, 2006.
Huang S. Numerical simulation and experimental studies on combustion process of the novel gas instantaneous water heater [D]. Chongqing: Chongqing University, 2006.
23 Barlow R, Frank J. Piloted CH4/air flames C, D, E and F - release2.1[EB/OL]. [2007-07-15]. http: //.
24 Fluent, ANSYS. Gambit 2.3 user’s guide [Z]. ANSYS Inc.Lebanon, NH, USA, 2006.
25 Fluent, ANSYS. ANSYS FLUENT user’s guide, release 14.0 [Z]. ANSYS Inc.Canonsburg, PA, USA, 2011.
26 Sandia/TUD piloted CH4/air jet flames [EB/OL]. [2003-01]. http: //.
27 张建, 李金科. 裂解炉NOx抑制技术[J]. 乙烯工业, 2013, 25(4): 40-43.
Zhang J, Li J K. NOx suppression technology for cracking furnace [J]. Ethylene Industry, 2013, 25(4): 40-43.
28 张昆. 大庆乙烯裂解炉热效率分析与优化[J]. 江西化工, 2015, 2(2): 17-20.
Zhang K. The analysis and optimization of Daqing ethylene cracking furnace thermal efficiency [J]. Jiangxi Chemical Industry, 2015, 2(2): 17-20.
29 王鹏. 多燃料燃气锅炉燃烧调整与运行优化[D]. 长沙: 长沙理工大学, 2015.
Wang P. More fuel gas boiler combustion adjustment and operation optimization [D]. Changsha: Changsha University of Science & Technology, 2015.
30 Kee R J, Rupley F M, Miller J A, et al. CHEMKIN Release 4.0[Z]. Reaction Design Inc.San Diego, CA, 2004.
31 Habibi A, Merci B, Heynderickx G J. Impact of radiation models in CFD simulations of steam cracking furnaces[J]. Comput. Chem. Eng., 2007, 31: 1389-1406.
32 申东发, 王国清, 刘俊杰, 等. 利用详细燃烧模型对裂解炉二维模型富氧燃烧过程进行数值模拟[J]. 石油化工, 2016, 45(6): 656-663.
Shen D F, Wang G Q, Liu J J, et al. 2D numerical simulation of oxygen-enriched combustion process in cracking furnace using detailed combustion model [J].Petrochemical Technology, 2016, 45(6): 656-663.
[1] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[2] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[3] 许于, 陈怡沁, 周静红, 隋志军, 周兴贵. LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830.
[4] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[5] 邢瑞, 江南, 刘冰, 安亚雄, 汪亚燕, 张东辉. 基于MPC控制技术优化VPSA制氧工艺的模拟[J]. 化工学报, 2020, 71(2): 669-679.
[6] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[7] 常诚, 冯连芳, 顾雪萍, 陈曦, 张才亮. 基于分子量分布指标的聚酯生产过程模拟方法[J]. 化工学报, 2020, 71(2): 708-714.
[8] 彭雪, 芦琛璘, 卢滇楠. 氧气和一氧化碳在人血红蛋白迁移过程研究[J]. 化工学报, 2020, 71(2): 724-735.
[9] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[10] 张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353.
[11] 周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165.
[12] 潘海华, 唐睿康. 生物矿化及仿生矿化中的信息传递和转化[J]. 化工学报, 2020, 71(1): 68-80.
[13] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[14] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[15] 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘海燕, 于建宁, 鲍晓军. 能源工业中的技术预见[J]. 化工学报, 2006, 57(8): 1817 -1826 .
[2] 郑春元, 翟晓强, 吴静怡, 杨干. 基于TRNSYS的冷热电联供系统建模与蓄能策略分析[J]. 化工学报, 2015, 66(S2): 311 -317 .
[3] 任帅, 李星, 张京, 汪小憨, 赵黛青. 乙醇和二甲醚微射流火焰燃烧特性研究[J]. 化工学报, 2019, 70(5): 1973 -1980 .
[4] 吴涵, 陈滢, 刘敏, 王淑莹, 张伟. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766 -776 .
[5] 谢雨珩, 李智, 杨明磊, 杜文莉. 基于自适应采样算法的芳烃异构化代理模型[J]. 化工学报, 2020, 71(2): 688 -697 .
[6] 张淑芬. 中国染料工业现状与发展趋势[J]. 化工学报, 2019, 70(10): 3704 -3711 .
[7] 彭雪, 芦琛璘, 卢滇楠. 氧气和一氧化碳在人血红蛋白迁移过程研究[J]. 化工学报, 2020, 71(2): 724 -735 .
[8] 韩剑鹏,包永忠. 氯乙烯SET-DT悬浮聚合动力学和成粒过程的相互关系[J]. 化工学报, 2020, 71(2): 854 -863 .
[9] 方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 0, (): 0 .
[10] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614 -625 .