化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3635-3644.doi: 10.11949/0438-1157.20190710

• 综述与专论 • 上一篇    下一篇

微通道内气-液两相传质过程行为及其应用

尧超群(),陈光文(),袁权   

  1. 中国科学院大连化学物理研究所,辽宁 大连 116023
  • 收稿日期:2019-06-24 修回日期:2019-07-18 出版日期:2019-10-05 发布日期:2019-11-07
  • 通讯作者: 陈光文 E-mail:superyao@dicp.ac.cn;gwchen@dicp.ac.cn
  • 作者简介:尧超群(1989—),男,博士,副研究员,superyao@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(91634204)

Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications

Chaoqun YAO(),Guangwen CHEN(),Quan YUAN   

  1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2019-06-24 Revised:2019-07-18 Online:2019-10-05 Published:2019-11-07
  • Contact: Guangwen CHEN E-mail:superyao@dicp.ac.cn;gwchen@dicp.ac.cn

摘要:

微通道内气-液两相体系中Taylor流和泡状流具有气泡尺寸均一、停留时间分布窄、可调控性强和比表面积高等优点,具有广泛的应用前景。从Taylor气泡和泡状气泡的传质过程出发,系统综述了微尺度下气泡的溶解规律、传质过程机理和传质/溶解模型等方面的研究进展,并介绍上述流型在反应或过程强化、基础物性及动力学数据测量和微纳材料合成方面的应用。最后总结并展望了技术领域的研究难点与研究方向。

关键词: 弹状流, 微通道, 微反应器, 气泡, 传质

Abstract:

The Taylor flow and bubbly flow in gas-liquid two phase systems in microchannels have the advantages of uniform bubble size, narrow residence time distribution, easy control, high specific surface area, and so on. These advantages facilitate them various applications and important implications. Based on the bubble dissolution and mass transfer process during Taylor flow and bubbly flow, this paper systematically reviews the research progress of bubble dissolution, mass transfer process and mass transfer/dissolution model at microscale, and introduces the above flow pattern in reaction or process. Finally, an outlook is given for further research directions in this field.

Key words: slug flow, microchannel, microreactor, bubble, mass transfer

中图分类号: 

  • TK 124

图1

不同方法测量得到的典型液弹内浓度场"

表1

常用的气液传质关联式"

文献关联式
[29]kLa=4.5DjG/LUC1DH
[30]kLa=2DHDUBDHLBLUC0.3
[24]kLa=Eq.(8)×μL1mPa?s-0.33
[28]kLa=0.111jTP1.19[(1-εG)LUC]0.57
[31]kLa=0.133jTP1.2LSDDCH40.5标准单位
[3]ShLaDH=0.084ReG0.213ReL0.912ScL0.5
[32]ShL=0.69(1+0.724ReTP0.48ScL1/3)
[17]ShLaDH=1.367ReG0.421ReL0.717ScL0.64CaTP0.5
[33]ShL=0.1ReTP0.421ScL0.05

图2

单元传质模型[17]"

图3

三层流模型[38]"

图4

液膜-液弹分区传质模型[39]"

图5

Taylor流强化氧化反应[2]"

图6

基于气泡溶解动力学的物性测量技术[8]"

图7

基于微流控的微囊材料合成[61]"

1 ZhaoY C, YaoC Q, ChenG W, et al. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor [J]. Green Chem., 2013, 15(2): 446-452.
2 HeZ, JamisonT F. Continuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagents [J]. Angewandte Chem., 2014, 126(13): 3421-3425.
3 YueJ, ChenG W, YuanQ, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel [J]. Chem. Eng. Sci., 2007, 62(7): 2096-2108.
4 CaoH S, ChenG W, YuanQ. Testing and design of a microchannel heat exchanger with multiple plates[J]. Ind. Eng. Chem. Res., 2009, 48(9): 4535-4541.
5 HesselV, KralischD, KockmannN, et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry [J]. ChemSusChem, 2013, 6(5): 746-789.
6 YaoC Q, DongZ Y, ZhangY C, et al. On the leakage flow around gas bubbles in slug flow in a microchannel [J]. AIChE J., 2015, 61(11): 3964-3972.
7 AbolhasaniM, GüntherA, KumachevaE. Microfluidic studies of carbon dioxide [J]. Angewandte Chem., 2014, 126 (31): 8126-8136.
8 AbolhasaniM, SinghM, KumachevaE, et al. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents [J]. Lab Chip, 2012, 12(9): 1611-1618.
9 ZhengC, ZhaoB, WangK, et al. Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique [J]. AIChE J., 2015, 61(12): 4358-4366.
10 SharbatianA, AbediniA, QiZ, et al. Full characterization of CO2-oil properties on-chip: solubility, diffusivity, extraction pressure, miscibility, and contact angle [J]. Anal. Chem., 2018, 90(4): 2461-2467.
11 尧超群, 乐军, 赵玉潮, 等. 微通道内气-液弹状流动及传质特性研究进展 [J]. 化工学报, 2015, 66(8): 2759-2766.
YaoC Q, YueJ, ZhaoY C, et al. Review on flow and mass transfer characteristics of gas-liquid slug flow in mieroehannels [J]. CIESC Journal, 2015, 66(8): 2759-2766.
12 FuT, MaY. Bubble formation and breakup dynamics in microfluidic devices: a review [J]. Chem. Eng. Sci., 2015, 135: 343-372.
13 SunR, CubaudT. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows [J]. Lab Chip, 2011, 11(17): 2924-2928.
14 YangL, Nieves-RemachaM J, JensenK F. Simulations and analysis of multiphase transport and reaction in segmented flow microreactors [J]. Chem. Eng. Sci., 2017, 169: 106-116.
15 AbolhasaniM, KumachevaE, GüntherA. Peclet number dependence of mass transfer in microscale segmented gas-liquid flow [J]. Ind. Eng. Chem. Res., 2015, 54(36): 9046-9051.
16 ButlerC, LalanneB, SandmannK, et al. Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale [J]. Int. J. Multiphase Flow, 2018, 105: 185-201.
17 YaoC Q, DongZ Y, ZhaoY C, et al. An online method to measure mass transfer of slug flow in a microchannel [J]. Chem. Eng. Sci., 2014, 112: 15-24.
18 YaoC Q, DongZ Y, ZhaoY C, et al. Gas-liquid flow and mass transfer in a microchannel under elevated pressures [J]. Chem. Eng. Sci., 2015, 123: 137-145.
19 SauzadeM, CubaudT. Initial microfluidic dissolution regime of CO2 bubbles in viscous oils [J]. Phys. Review E, 2013, 88(5): 051001.
20 YaoC Q, LiuY Y, ZhaoS N, et al. Bubble/droplet formation and mass transfer during gas-liquid-liquid segmented flow with soluble gas in a microchannel [J]. AIChE J., 2017, 63(5): 1727-1739.
21 DietrichN, LoubièreK, JimenezM, et al. A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel [J]. Chem. Eng. Sci., 2013, 100: 172-182.
22 KececiS, WörnerM, OneaA, et al. Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow [J]. Catal. Today, 2009, 147: S125-S131.
23 SohG Y, YeohG H, TimchenkoV. Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel [J]. Microfluid Nanofluid, 2017, 21(12): 175.
24 YaoC Q, ZhaoY C, ChenG W. Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications [J]. Chem. Eng. Sci., 2018, 189: 340-359.
25 OneaA, WörnerM, CacuciD G. A qualitative computational study of mass transfer in upward bubble train flow through square and rectangular mini-channels [J]. Chem. Eng. Sci., 2009, 64(7): 1416-1435.
26 HassanvandA, HashemabadiS H. Direct numerical simulation of mass transfer from Taylor bubble flow through a circular capillary[J]. Int. J. Heat Mass Trans., 2012, 55(21/22): 5959-5971.
27 JiaH W, ZhangP. Investigation of the Taylor bubble under the effect of dissolution in microchannel [J]. Chem. Eng. J., 2016, 285: 252-263.
28 BercicG, PintarA. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries [J]. Chem. Eng. Sci., 1997, 52: 3709-3719.
29 VanduC O, LiuH, KrishnaR. Mass transfer from Taylor bubbles rising in single capillaries [J]. Chem. Eng. Sci., 2005, 60(22): 6430-6437.
30 YueJ, LuoL, GonthierY, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels [J]. Chem. Eng. Sci., 2009, 64(16): 3697-3708.
31 HeiszwolfJ J, KreutzerM T, van den EijndenM G, et al. Gas-liquid mass transfer of aqueous Taylor flow in monoliths [J]. Catal. Today, 2001, 69(1): 51-55.
32 IrandoustS, ErtléS, AnderssonB. Gas-liquid mass transfer in taylor flow through a capillary [J]. The Canadian J. Chem. Eng., 1992, 70(1): 115-119.
33 SobieszukP, PohoreckiR, CygańskiP, et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel [J]. Chem. Eng. Sci., 2011, 66(23): 6048-6056.
34 van BatenJ M, KrishnaR. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries [J]. Chem. Eng. Sci., 2004, 59(12): 2535-2545.
35 DongZ Y, YaoC Q, ZhangX, et al. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification[J]. Lab Chip, 2015, 15(4): 1145-1152.
36 DongZ Y, YaoC Q, ZhangY, et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors [J]. AIChE J., 2016, 62: 1294-1307.
37 ZhangP, YaoC, MaH, et al. Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels [J]. Chem. Eng. Sci., 2018, 182: 17-27.
38 SvetlovS D, AbievR S. Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model [J]. Theor. Found. Chem. Eng., 2016, 50(6): 975-989.
39 ButlerC, CidE, BilletA M. Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique [J]. Chem. Eng. Res. Des., 2016, 115: 292-302.
40 NirmalG M, LearyT F, RamachandranA. Mass transfer dynamics in the dissolution of Taylor bubbles [J]. Soft Matter., 2019, 15(13): 2746-2756.
41 YaoC Q, ZhengJ, ZhaoY C, et al. Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel [J]. Chem. Eng. J., 2019, 373: 437-445.
42 SalariA, GnyawaliV, GriffithsI M, et al. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes [J]. Soft Matter., 2017, 13(46): 8796-8806.
43 ShimS, WanJ, HilgenfeldtS, et al. Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel [J]. Lab Chip, 2014, 14(14): 2428-2436.
44 CubaudT, SauzadeM, SunR. CO2 dissolution in water using long serpentine microchannels [J]. Biomicrofluidics, 2012, 6(2): 022002.
45 YangL, TanJ, WangK, et al. Mass transfer characteristics of bubbly flow in microchannels [J]. Chem. Eng. Sci., 2014, 109: 306-314.
46 MikaelianD, HautB, ScheidB. Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: CFD analysis [J]. Microfluid Nanofluid, 2015, 19(3): 523-545.
47 MikaelianD, HautB, ScheidB. Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model [J]. Microfluid Nanofluid, 2015, 19(4): 899-911.
48 Rivero-RodriguezJ, ScheidB. Bubbles dissolution in cylindrical microchannels [J]. J. Fluid Mech., 2019, 869: 110-142.
49 SuY H, ChenG W, YuanQ. Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel [J]. AIChE J., 2012, 58(6): 1660-1670.
50 SuY H, ChenG W, ZhaoY C, et al. Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel [J]. AIChE J., 2009, 55(8): 1948-1958.
51 TanJ, LiuZ D, LuY C, et al. Process intensification of H2O2 extraction using gas-liquid-liquid microdispersion system [J]. Sep. Purif. Technol., 2011, 80(2): 225-234.
52 ZhangJ S, WangK, LinX Y, et al. Intensification of fast exothermic reaction by gas agitation in a microchemical system [J]. AIChE J., 2014, 60(7): 2724-2730.
53 ZhaoS, WangW, ShaoT, et al. Mixing performance and drug nano-particle preparation inside slugs in a gas-liquid microchannel reactor [J]. Chem. Eng. Sci., 2013, 100: 456-463.
54 RahmanM T, FukuyamaT, KamataN, et al. Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system [J]. Chem. Comm., 2006, 21: 2236-2238.
55 NguyenP, MohaddesD, RiordonJ, et al. Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils [J]. Anal. Chem., 2015, 87(6): 3160-3164.
56 LiuN, AymonierC, LecoutreC, et al. Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy [J]. Chem. Phys. Letter, 2012, 551: 139-143.
57 LutherS K, StehleS, WeihsK, et al. Determination of vapor-liquid equilibrium data in microfluidic segmented flows at elevated pressures using Raman spectroscopy [J]. Anal. Chem., 2015, 87(16): 8165-8172.
58 LiW, LiuK, SimmsR, et al. Microfluidic study of fast gas-liquid reactions [J]. J. Am. Chem. Soc., 2012, 134(6): 3127-3132.
59 YeC B, DangM H, YaoC Q, et al. Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors [J]. Chem. Eng. J., 2013, 225: 120-127.
60 WanJ, BickA, SullivanM, et al. Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles [J]. Adv. Mater., 2008, 20(17): 3314-3318.
61 ParkJ I, JagadeesanD, WilliamsR, et al. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities [J]. ACS Nano., 2010, 4(11): 6579-6586.
62 ChangY W, HeP, MarquezS M, et al. Uniform yeast cell assembly via microfluidics[J]. Biomicrofluidics, 2012, 6: 024118.
[1] 周毓佳, 赵陈儒, 薄涵亮. 气泡曳力系数模型分区研究[J]. 化工学报, 2019, 70(S2): 108-116.
[2] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[3] 诸凯, 谢艳琦, 王雅博. 冷冻保存中影响胞内冰生长的因素[J]. 化工学报, 2019, 70(S2): 208-214.
[4] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[5] 张强, 王良璧. 润滑脂传质分离特性规律实验研究[J]. 化工学报, 2019, 70(S2): 294-300.
[6] 张光华, 董秋辰, 刘晶. 多苯环双子季铵盐在油水两相中的传质性能[J]. 化工学报, 2019, 70(S1): 61-68.
[7] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[8] 杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319.
[9] 田震, 成有为, 王丽军, 李希. 温度与压力对单孔气泡形成过程的影响[J]. 化工学报, 2019, 70(9): 3337-3345.
[10] 陈宏霞, 肖红洋, 孙源, 刘霖. 微柱表面液滴定壁温沸腾实验研究[J]. 化工学报, 2019, 70(9): 3363-3369.
[11] 白炳林, 杨晓宏, 田瑞, 史盼敬, 李达. 太阳能光热-光电中空纤维真空膜蒸馏系统理论与实验研究[J]. 化工学报, 2019, 70(9): 3517-3526.
[12] 冯世豪, 唐晓飞, 都健, 孟庆伟. 用微反应器实现可见光驱动的不对称氧化连续化反应[J]. 化工学报, 2019, 70(8): 3202-3209.
[13] 刘宏臣, 周峰, 尧超群, 陈光文. 微反应器内CO2解吸过程流动行为及气提强化[J]. 化工学报, 2019, 70(7): 2448-2455.
[14] 杨海涛, 郑志坚, 朱家骅, 陈倬, 杨晨鹏, 段旬. 气液交叉流阵列PM2.5热泳和扩散泳拟传质模型[J]. 化工学报, 2019, 70(6): 2139-2146.
[15] 张朔, 王维, 李强强, 唐宇佳, 董铁有. 具有预制孔隙的维生素C水溶液微波冷冻干燥[J]. 化工学报, 2019, 70(6): 2129-2138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] S. K. Lahiri, K. C. Ghanta. Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model[J]. CIESC Journal, 2008, 16(6): 841 -848 .
[2] 王建龙, 彭永臻, 王淑莹, 高永青. Nitrogen Removal by Simultaneous Nitrification and Denitrification via Nitrite in a Sequence Hybrid Biological Reactor[J]. CIESC Journal, 2008, 16(5): 778 -784 .
[3] 王涛, 张影, 任晓玲. Biphenyl Bis[(π-cyclopentadienyl)iron]Dication as an Efficient Cationic Photoinitiator for Epoxy Polymerization[J]. CIESC Journal, 2008, 16(5): 819 -822 .
[4] 谢鹏程, 李锋祥, 丁玉梅, 阎华, 关昌峰, 杨卫民. Experimental Study of Heat Transfer Enhancement and Friction Loss Induced by Inserted Rotor-assembled Strand(I) Water[J]. CIESC Journal, 2008, 16(6): 849 -855 .
[5] 张建宇, 胡艾希, 王宇, 肖旭辉, 郭家斌, 罗先福. The Separation of Catechol from Carbofuran Phenol by Extractive Distillation[J]. CIESC Journal, 2009, 17(1): 42 -46 .
[6] 张文启, 饶品华, 张辉, 徐菁利. The Role of Diatomite Particles in the Activated Sludge System for Treating Coal Gasification Wastewater[J]. CIESC Journal, 2009, 17(1): 167 -170 .
[7] 肖美添, 叶静, 张亚武, 黄雅燕. Reaction Characteristics of Asymmetric Synthesis of (2S,5S)-2,5-Hexanediol Catalyzed with Baker’s Yeast Number 6[J]. CIESC Journal, 2009, 17(3): 493 -499 .
[8] 武成利, 曹晏, 董众兵, 潘伟平. Impacting Factors of Elemental Mercury Re-emission across a Lab-scale Simulated Scrubber[J]. CIESC Journal, 2010, 18(3): 523 -528 .
[9] 腾晖, 王军, 任晓乾, 陈德民. Disproportionation of Toluene by Modified ZSM-5 Zeolite Catalysts with High Shape-selectivity Prepared Using Chemical Liquid Deposition with Tetraethyl Orthosilicate[J]. CIESC Journal, 2011, 19(2): 292 -298 .
[10] 梁镇海, 李素, 郭文倩, 樊彩梅. The Kinetics for Electrochemical Removal of Ammonia in Coking Wastewater [J]. CIESC Journal, 2011, 19(4): 570 -574 .