化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 461-470.doi: 10.11949/0438-1157.20190670

• 材料化学工程与纳米技术 • 上一篇    下一篇

商业正渗透膜的改性及其用于处理焦化废水的研究

李志强1(),吕娜1,蒋兰英1,2()   

  1. 1.中南大学冶金与环境学院,湖南 长沙 410083
    2.国家重金属污染防治工程技术研究中心,湖南 长沙 410083
  • 收稿日期:2019-06-17 修回日期:2019-10-09 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 蒋兰英 E-mail:757252802@qq.com;jianglanyingsme@csu.edu.cn
  • 作者简介:李志强(1990—),男,硕士,757252802@qq.com

Modification of commercial forward osmosis membranes and investigation on treatment of coking wastewater

Zhiqiang LI1(),Na LYU1,Lanying JIANG1,2()   

  1. 1.School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
    2.National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, China
  • Received:2019-06-17 Revised:2019-10-09 Online:2020-04-25 Published:2020-05-22
  • Contact: Lanying JIANG E-mail:757252802@qq.com;jianglanyingsme@csu.edu.cn

摘要:

正渗透技术是一种新兴的膜分离技术,在处理有机废水方面具有广阔的应用前景。分别对Poten以及HTI商业正渗透膜进行改性,并用于对焦化废水中难降解毒性小分子(吲哚和吡啶)的截留测试。探究了水相单体PIP浓度、膜朝向、汲取液浓度对改性前后两种膜水通量、Js/Jw比值、有机物截留率的影响,以及改性前后两膜特征参数的变化。结果表明:对Poten膜和HTI膜进行界面聚合改性后,膜水通量以及Js/Jw比值都不同程度地降低;改性后的两正渗透膜水渗透系数A、盐渗透系数B均降低,而膜结构参数S以及对NaCl和有机物的截留率均提高;其中HTI-IP复合膜对有机物的截留率(81%)明显高于IP-2(改性Poten膜)复合膜;与FO模式相比,IP-2复合膜在PRO模式下(汲取液面向活性层)具有更高的水通量及反向盐通量。此外,在两种膜朝向下,水通量及反向盐通量都随汲取液浓度的增大而增大,但是在FO模式下(料液面向活性层),通量呈现非线性增长。

关键词: 正渗透膜, 焦化废水, 改性, 界面聚合

Abstract:

Forward osmosis technology is an emerging membrane separation technology and has broad application prospects in the treatment of organic wastewater. In this paper, the Poten and HTI commercial forward osmosis membranes were modified and used for the rejection of refractory toxic small molecules (indole and pyridine) in coking wastewater. The effects of PIP concentration, membrane orientation and draw solution concentration on the membrane water flux, Js/Jwratio and organic matter rejection before and after modification, and the changes of the membrane characteristic parameters before and after modification were investigated. The results show that the membrane water flux and the Js/Jw ratio are reduced to different degrees after the interfacial polymerization modification of the Poten membrane and the HTI membrane. The water permeability coefficient A and the salt permeability coefficient B of the modified two forward osmosis membranes were both reduced. The membrane structure parameter S and the rejection of NaCl and organic matters were improved; the rejection of organic matter by HTI-IP composite membrane (81%) was significantly higher than that of IP-2 composite membrane; compared with FO mode, IP-2 composite membrane had higher water flux and reverse salt flux in PRO mode. In addition, both water flux and reverse salt flux increase with increasing draw solution concentration in different membrane orientations, but in FO mode, membrane flux exhibits a non-linear increase.

Key words: forward osmosis membrane, coking wastewater, modification, interfacial polymerization

中图分类号: 

  • TQ 028

表1

模拟焦化废水的组成(pH=7.5)"

成分浓度/(mg/L)
吲哚50
吡啶50
NH3-N80
COD146

图1

自制框式界面聚合装置"

图2

Poten膜界面聚合反应"

图3

HTI膜界面聚合反应原理"

图4

正渗透过程原理图1—料液罐;2—电导率仪;3—磁力泵;4—流量计;5—膜组件;6—压力表;7—汲取液灌"

图5

实验室自制RO设备1—料液罐;2—磁力泵;3—压力表;4—膜组件;5—阀门;6—渗透液罐;7—流量计;8—电子秤"

图6

PIP单体浓度对Poten膜正渗透性能的影响"

图7

不同PIP浓度改性后Poten膜的SEM图"

图8

不同PIP浓度改性后Poten膜的AFM结果"

图9

不同PIP浓度改性后的Poten膜接触角变化"

图10

改性前后HTI膜正渗透性能(a)以及接触角(b)变化"

图11

改性前后HTI膜SEM图"

图12

改性前后HTI膜AFM结果"

表2

改性前后正渗透膜的特征参数测试结果"

样品A/(kg/(m2·h·bar))B/(kg/(m2·h))S/μmR/%
PIP-07.640.26488287.2
PIP-25.430.071154394.7
HTI0.360.003527893.0
HTI-IP0.330.001158198.0

图13

改性前后两FO膜对有机物截留率的变化"

图14

PIP-2膜通量随汲取液浓度的变化(FO模式)"

图15

PIP-2膜通量随汲取液浓度的变化(PRO模式)"

1 Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005.
2 Marañón E, Vázquez I, Rodríguez J. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale[J]. Bioresour. Technol., 2008, 99(10): 4192-4198.
3 Kim Y M, Park D, Lee D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. Journal of Hazardous Materials, 2008, 152(3): 915-921.
4 刘国新, 吴海珍, 孙胜利, 等.市政污泥接种焦化废水好氧降解能力及微生物群落演替的响应分析[J].环境科学, 2017, 38(9): 3807-3815.
Liu G X, Wu H Z, Song S L, et al. Aerobic degradation and microbial community succession of coking wastewater with municipal sludge[J]. Environmental Science, 2017, 38(9): 3807-3815.
5 Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005.
6 潘霞霞, 李媛媛, 黄会静, 等.焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响[J].化工学报, 2009, 60(12): 3089-3096.
Pan X X, Li Y Y, Huang H J, et al. Biodegradation of thiocyanate and inhibitory interaction with phenol, ammonia in coking wastewater[J]. CIESC Journal, 2009, 60(12): 3089-3096.
7 Jin X W, Li E C, Lu S G, et al. Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8): 1565-1574.
8 Bodzek M, Bohdziewicz J, Kowalska M. Immobilized enzyme membranes for phenol and cyanide decomposition[J]. Journal of Membrane Science, 1996, 113(2): 373-384.
9 Kowalska M, Bodzek M, Bohdziewicz J. Biodegradation of phenols and cyanides using membranes with immobilized microorganisms[J]. Process Biochemistry, 1998, 33(2): 189-197.
10 曲余玲, 毛艳丽, 翟晓东.焦化废水深度处理技术及工艺现状[J].工业水处理, 2015, 35(1): 14-17.
Qu Y L, Mao Y L, Zhai X D. Advanced treatment technology of coking wastewater and its present status[J]. Industrial Water Treatment, 2015, 35(1): 14-17.
11 Kimura K, Oki Y. Efficient control of membrane fouling in MF by removal of biopolymers: comparison of various pretreatments[J]. Water Research, 2017, 115: 172-179.
12 Kimura K, Shikato K, Oki Y, et al. Surface water biopolymer fractionation for fouling mitigation in low-pressure membranes[J]. Journal of Membrane Science, 2018, 554: 83-89.
13 Zhao S, Zou L, Tang C Y, et al. Recent developments in forward osmosis: opportunities and challenges[J]. Journal of Membrane Science, 2012, 396(1): 1-21.
14 Cath T Y, Childress A E, Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87.
15 Cornelissen E R, Harmsen D, Beerendonk E F, et al. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater [J]. Water Science & Technology, 2011, 63(8): 1557-1565.
16 Achilli A, Cath T Y, Marchand E A, et al. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes[J]. Desalination, 2009, 239(1): 10-21.
17 Wang X, Chang V, Tang C. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504: 113-132.
18 Huang L, Lee D J. Membrane bioreactor: a mini review on recent R&D works[J]. Bioresource Technology, 2015, 194: 383-388.
19 Xiao D, Tang C Y, Zhang J, et al. Modeling salt accumulation in osmotic membrane bioreactors: implications for FO membrane selection and system operation[J]. Journal of Membrane Science, 2011, 366(1/2): 314-324.
20 Nguyen N C, Chen S S, Nguyen H T, et al. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment[J]. Water Research, 2016, 91: 305-313.
21 Yuan B, Wang X, Tang C, et al. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy[J]. Water Research, 2015, 75: 188-200.
22 Li F, Cheng Q, Tian Q, et al. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor[J]. Bioresource Technology, 2016, 211: 751-758.
23 Israelachvili J N. Intermolecular and Surface Forces: with Applications to Colloidal and Biological Systems[M]. USA: Academic Press, 1985.
24 Xie M, Price W E, Long D N, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis[J]. Journal of Membrane Science, 2013, 438(7): 57-64.
25 Song Y, Sun P, Henry L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of Membrane Science, 2005, 251(1/2): 67-79.
26 Chai G Y, Krantz W B. Formation and characterization of polyamide membranes via interfacial polymerization[J]. Journal of Membrane Science, 1994, 93(2): 175-192.
27 Chinpa W, Quémener D, Bèche E, et al. Preparation of poly(etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly(ethylene glycol)[J]. Journal of Membrane Science, 2018, 365(1): 89-97.
28 Rastgar M, Bozorg A, Shakeri A. A novel dimensionally-controlled nano-pore forming template in forward osmosis membranes[J]. Environmental Science & Technology, 2018, 52(5): 2704–2716.
29 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260.
Wang Y Q, Xu T W, Wang H T. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64(1): 252-260.
[1] 孙艳, 刘士涛, 邓尚, 余丽芸, 吕东伟, 马军, 刘献斌. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460.
[2] 鲁玉莹, 余黎明, 杨加可, 曾武松, 陆江银. 响应面法优化制备LDHs-CRMA复合改性沥青及其表征[J]. 化工学报, 2020, 71(3): 1362-1369.
[3] 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898.
[4] 王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875.
[5] 李秀秀, 魏逸彬, 谢子萱, 漆虹. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(7): 2737-2747.
[6] 赵云, 刘春燕, 刘家旭, 贺宁, 郭洪臣. Zn/NaHZSM-5沸石在C5~C8链烷烃芳构化反应中的催化性能[J]. 化工学报, 2019, 70(6): 2182-2191.
[7] 朱勇晨, 李小华, 张小雷, 胡超, 董文斌, 程静峰, 邵珊珊. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803.
[8] 段文松, 李带, 张方芳, 许志恒, 郝敏, 崔嘉吉, 吴安安, 黄观超. 正渗透膜生物反应器运行过程中溶质反渗对微生物群落的影响[J]. 化工学报, 2019, 70(5): 1981-1990.
[9] 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301.
[10] 吴小平, 王晨光, 张琦, 刘琪英, 张兴华, 马隆龙. PtSn-Mg(Zn)AlO催化剂应用于乙烷脱氢反应研究[J]. 化工学报, 2019, 70(11): 4268-4277.
[11] 郝松泽, 张宏伟, 吴云, 王捷. 双金属催化滤料生物滤池处理效果及对膜污染影响研究[J]. 化工学报, 2019, 70(11): 4377-4386.
[12] 安志远, 朱超, 刘熠斌, 冯翔, 金鑫, 陈小博, 杨朝合. Zn/HZSM-5分子筛催化棕榈油多产芳烃的研究[J]. 化工学报, 2019, 70(11): 4289-4297.
[13] 崔勍焱, 张浩彬, 魏强, 岳源源, 王廷海, 朱海波, 周亚松, 鲍晓军. Zr改性Y分子筛中油型加氢裂化催化剂设计制备[J]. 化工学报, 2019, 70(10): 3949-3955.
[14] 段亚强, 何险峰, 武桐, 张燕萍, 赵志国. 极压石墨烯润滑油添加剂的制备与应用[J]. 化工学报, 2019, 70(1): 360-369.
[15] 宋迪慧, 安路阳, 张立涛, 张亚峰, 徐歆未, 王宇楠, 卫皇曌. 响应曲面法优化电化学耦合体系预处理焦化废水[J]. 化工学报, 2018, 69(9): 4001-4011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .