化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1026-1034.doi: 10.11949/0438-1157.20190646

• 流体力学与传递现象 • 上一篇    下一篇

R290在小管径水平微肋管内沸腾传热的实验研究

王乐乐,戴源德(),田思瑶,林秦汉   

  1. 南昌大学机电工程学院能源与动力工程研究所,江西 南昌 330031
  • 收稿日期:2019-06-10 修回日期:2019-10-22 出版日期:2020-03-05 发布日期:2019-11-02
  • 通讯作者: 戴源德 E-mail:ydncu@163.com
  • 基金资助:
    江西省自然科学基金项目(20161BAB206124)

Experimental investigation on characteristics of R290 boiling heat transfer in horizontal micro-fin tubes with small diameter

Lele WANG,Yuande DAI(),Siyao TIAN,Qinhan LIN   

  1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
  • Received:2019-06-10 Revised:2019-10-22 Online:2020-03-05 Published:2019-11-02
  • Contact: Yuande DAI E-mail:ydncu@163.com

摘要:

实验研究小管径水平微肋管内R290的两相流沸腾传热特性,分别在内径为4、6 mm,有效长度为900 mm的紫铜管内,得到R290在质量流量密度100~250 kg·m-2·s-1、饱和温度7~11℃、热通量13~24 kW·m-2以及干度0.1~0.9范围内的沸腾传热系数;分析了质量流量密度、饱和温度、热通量、管型以及干度对R290沸腾传热系数及临界干度的影响。结果发现:沸腾传热系数随质量流量密度、饱和温度的增大而增加;随着热通量的增大,传热系数出现先增后减的现象;热通量越高,临界干度越小;微肋管相比于光滑管临界干度更大;且随着R290的沸腾汽化,干度逐渐增大并出现干涸现象,导致沸腾传热系数先增至一极值后降低。分别采用6种常用的沸腾传热关联式预测R290的沸腾传热系数,对比实验结果得出Fang等和Choi等的预测精度比较高。

关键词: R290, 微肋管, 沸腾, 相变, 流动, 传热, 预测

Abstract:

The boiling heat transfer characteristics of R290 in horizontal micro-fin copper tubes with inner diameter of 4mm and 6mm were investigated experimentally. And the effects of mass flux(100—250 kg·m-2·s-1),saturation temperature(7—11℃),heat flux(13—24 kW·m-2) ,tube type and vapor quality(0.1—0.9) on the boiling heat transfer coefficient and critical quality were analyzed .The results showed that the boiling heat transfer coefficient increased with the increase of mass flux or saturation temperature. The boiling heat transfer coefficient increased at first but then decreased as the increase of heat flux. And the results also showed that critical quality decreased with the increase of heat flux. Comparing to the smooth tube, micro-fin had a larger critical quality. With the increase of vapor quality accompanied by the heat absorbing boiling process of R290, the boiling heat transfer coefficient increased at first but then decreased. Six commonly used correlations of boiling heat transfer were used to predict the boiling heat transfer coefficient of R290. Comparing with the experimental results, the prediction accuracy of Fanget al. and Choiet al. was higher.

Key words: R290, micro-fin tube, boiling, phase change, flow, heat transfer, prediction

中图分类号: 

  • TB 6

图1

实验系统原理图"

表1

实验测量仪器及参数"

测量参数测量仪表及型号测量范围误差
质量流量mref/(kg·h-1)DMF-1-1A/DX 科氏质量流量计0~40±0.2%
体积流量Vw/(L·min-1)LDY-S 电磁流量计0.05~3.50±0.5%
工质温度tsat/℃Pt100 电阻温度计-50~200±0.1℃
内管外壁温two/℃TT-T-30-SLE T型热电偶-200~150±0.1℃
压力p/MPaTrafan8251 压力传感器0~6±0.3%

图2

实验段结构"

图3

微肋管结构剖面"

表2

微肋管结构参数"

外径do/mm内径di/mm总壁厚δ/mm底壁厚δw/mm齿顶高度Hf/mm齿顶角α/(°)螺纹条数n螺旋角β/(°)
5.004.00±0.030.500.35±0.030.15±0.0240±56518±2
7.006.00±0.030.500.35±0.030.15±0.0240±56518±2

表3

热平衡测试数据"

测试编号体积流量/(L·min-1)进口温度/℃出口温度/℃比热容/(kJ·kg-1·℃-1)密度/(kg·m-3)漏热率/%

1

热水1.67352.443.54.181988.91

2.82

冷水2.21023.730.24.181996.49

2

热水1.55253.243.34.181988.78

2.30

冷水2.22424.030.74.181996.38

3

热水1.48652.843.94.181988.73

2.25

冷水2.10323.429.54.181996.62

图4

质量流量密度对传热系数的影响"

图5

饱和温度对传热系数的影响"

图6

热通量对传热系数与临界干度的影响"

图7

管型对传热系数与临界干度的影响"

图8

沸腾传热系数实验值与预测值对比[27,28,29,30,31,32]"

表4

关联式的预测偏差"

CorrelationseR/%eA /%ω±20%ω±30%
Choiet al.[27]-7.3717.5951.8871.87
Fanget al.[28]-3.115.9098.44100
Pamitranet al.[29]37.6439.7645.3156.25
Bertschet al.[30]23.5927.2246.8770.31
Cavalliniet al.[31]23.5237.0631.2546.87
Yunet al.[32]-16.8532.8325.0336.69
1 Choudhari C S,Sapali S N.Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems[J].Energy Procedia,2017,109:346-352.
2 Parikshit A L,Choudhari C S.Perspective of environmental friendly refrigeration propane(R290)[J].International Journal of Innovative Research in Science and Engineering,2016,2(3):748-753.
3 Liang J R,Li T X.Detailed dynamic refrigerant migration characteristics in room air-conditioner with R290[J].International Journal of Refrigeration,2017,88:108-116.
4 Teddy I O,Oluseyi O A.Thermal performance and energy consumption analyses of R290 and R22 refrigerants in air-conditioning system[J].Materials Science and Engineering,2018,43:1-9.
5 Vishakha S J,Ashok J K.Experimental performance study of R290 as an alternative to R22 refrigerant in a window air conditioner[J].Materials Science and Engineering,2018,13:1-8.
6 Hui L,Hong X.Study on Performances of refrigeration-type compressed-air dryers using environmentally-friendly refrigerants R717, R290 and R600a[J].Applied Mechanics and Materials,2014,672:1708-1711.
7 Kashif N,Bo S,Ahmed E,et al.R290(Propane) and R600a(isobutane) as natural refrigerants for residential heat pump water heaters[J].Applied Thermal Engineering,2017,127:870-883.
8 Zou S K,Dai Y D,He G G.Studies on phase change heat transfer of R290 and its refrigerant mixtures in horizontal tube[J].Chemical Industry and Engineering Progress,2016,35(11):3413-3420.
9 Zhou W J,Gan Z H.A potential approach for reducing the R290 charge in air conditioners and heat pumps[J].International Journal of Refrigeration,2019,20:1-14.
10 Nguyen B C,Pham Q V,Kwang-I1 C, et al.Boiling heat transfer of R32, CO2 and R290 inside horizontal minichannel[J].Energy Procedia,2017,105:4822-4827.
11 张慧晨,刘建华,徐小进,等.微细管内R290流动沸腾换热与干涸特性研究[J].能源工程,2016,6:1-5.
Zhang H C,Liu J H,Xu X J,et al.Experimental study of the heat transfer and dryout for R290 flow boiling in micro-tubes[J].Energy Engineering,2016,6:1-5.
12 Jeferson D O,Jacqueline B C,Julio C P.Experimental investigation on flow boiling pressure drop of R290 and R600a in a horizontal small tube[J].International Journal of Refrigeration,2017,84:165-180.
13 周小清,柳建华,徐小进,等.微细通道内R290流动沸腾换热特性实验研究[J].热能动力工程,2017,32(4):38-42.
Zhou X Q,Liu J H,Xu X J.Experimental study on flow boiling heat transfer characteristics of R290 in microchannel[J].Journal of Engineering for Thermal Energy and Power,2017,32(4):38-42.
14 Jiong T O,Pamitran A S,Kwang I C,et al.Experimental investigation on two-phase flow boiling heat transfer of five refrigerants in horizontal small tubes of 0.5, 1.5 and 3.0 mm inner diameters[J].International Journal of Heat and Mass Transfer,2011,54:2080-2088.
15 Lillo G R,Mastrullo A,Mauro W,et al.Flow boiling heat transfer, dry-out vapor quality and pressure drop of propane(R290): experimental and assessment of predictive methods[J].International Journal of Heat and Mass Transfer,2018,126:1236-1252.
16 Zan W,Bengt S D,Vishwas V W,et al.Heat transfer correlations for single-phase flow, condensation, and boiling in microfin tubes[J].Heat Transfer Engineering,2015,36:582-595.
17 Zou X,Gong M Q,Chen G F,et al.Experimental study on saturated flow boiling heat transfer of RE170/R290 mixtures in a horizontal tube[J].International Journal of Refrigeration,2010,33:371-380.
18 Li K Q,He G G,Jiang J K,et al.Flowing boiling heat transfer characteristics and pressure drop of R290/oil solution in smooth horizontal tubes[J].International Journal of Heat and Mass Transfer,2018,119:777-790.
19 He G G,Liu F,Cai D H,et al.Experimental investigation on flow boiling heat transfer performance of a new near azeotropic refrigerant mixture R290/R32 in horizontal tubes[J].International Journal of Heat and Mass Transfer,2016,102:561-573.
20 Zou X,Gong M Q,Chen G F,et al.Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube[J].Energy Power Engineering,2010,4(4):527-534.
21 Jin S J,Wang X C,Ma X L,et al.Study on the performance of small tube diameter R290 fin-tube evaporator[J].Procedia Engineering,2017,205:1578-1583.
22 戴源德,林秦汉,邹思凯,等.R290在水平光滑管内的沸腾换热[J].化工学报,2017,68(9):3420-3426.
Dai Y D,Lin Q H,Zou S K,et al.Boiling heat transfer performance of R290 in smooth horizontal tubes[J],CIESC Journal,2017,68(9):3420-3426.
23 杨世铭,陶文铨.传热学 [M].4版. 北京:高等教育出版社,2006:203.
Yang S M,Tao W Q.Heat Transfer[M].4th ed.Beijing:Higher Education Press,2006:203.
24 杨春信,吴玉庭,袁修干,等.核态池沸腾中气泡生长和脱离的动力学特征——气泡的脱离直径与脱离频率[J].热能动力工程,1999,14(5):330-333.
Yang C X,Wu Y T,Yuan X G,et al.Dynamic characteristics of bubble growth and departure in nucleate boiling—bubble departure diameter and frequency[J].Journal of Engineering for Thermal Energy and Power,1999,14(5):330-333.
25 欧阳新萍,陈静竹,李泰宇.3种管内强化管沸腾换热性能对比[J].化工学报,2015,66(6):2076-2081.
Ouyang X P,Chen J Z,Li T Y.Boiling heat transfer performance in three internal enhanced tubes[J].CIESC Journal,2015,66(6):2076-2081.
26 司少娟,欧阳新萍,张连杰,等.T型沸腾强化换热管传热性能的实验研究[J].热能动力工程,2011,26(4):410-414.
Si S J,Ouyang X P,Zhang L J.Experimental study of the heat transfer performance of a T-shaped fin boiling intensified heat exchange pipe[J].Journal of Engineering for Thermal Energy and Power,2011,26(4):410-414.
27 Choi K I,Pamitran A S,Oh J T,et al.Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels[J].International Journal of Refrigeration,2009,32(5):837-845.
28 Fang X D,Wu Q,Yuan Y L.A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J].International Journal of Heat and Mass Transfer,2016,107:972-981.
29 Pamitran A S,Choi K I,Oh J T,et al.Two-phase flow heat transfer of propane vaporization in horizontal minichannels[J].Journal of Mechanical Science and Technology,2009,23:599-606.
30 Bertsch S S,Groll E A,Garimella S V.A composite heat transfer correlation for saturated flow boiling in small channels[J].CTRC Research Publication,2009,52(7):2110-2118.
31 Cavallini A,Del C D,Doretti L,et al.Refrigerant vaporization inside enhanced tubes: a heat transfer model[J].Heat and Technology,1999,17(2):29-36.
32 Yun R,Kim Y C,Seo K J,et al.A generalized correlation for evaporation heat transfer of refrigerants in micro-fin tubes[J].International Journal of Heat and Mass Transfer,2002,45:2003-2010.
[1] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[2] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[3] 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
[4] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[5] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[6] 姚鑫宇, 程潇, 王晗, 沈洪, 吴慧英, 刘振宇. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502-1509.
[7] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[8] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
[9] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[10] 何德峰, 张永达, 李廉明, 仇翔. 循环流化床燃烧系统无终端约束字典序经济预测控制[J]. 化工学报, 2020, 71(3): 1210-1216.
[11] 赵文英, 李文文, 孙晓岩, 曹晓荣, 项曙光. 基于PR立方型状态方程普遍化温度函数的研究与评价[J]. 化工学报, 2020, 71(3): 1234-1245.
[12] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[13] 蔡涛, 杨博, 李宏光. 基于时延挖掘模糊时间认知图的化工过程多变量时序预测方法[J]. 化工学报, 2020, 71(3): 1095-1102.
[14] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[15] 杜宇浩, 阎高伟, 李荣, 王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 傅永峰, 苏宏业, 张英, 褚健. Adaptive Soft-sensor Modeling Algorithm Based on FCMISVM and Its Application in PX Adsorption Separation Process[J]. CIESC Journal, 2008, 16(5): 746 -751 .
[2] 李小军, 尹明辉, 张国亮, 张凤宝. Synthesis and Characterization of Novel Temperature and pH Responsive Hydroxylpropyl Cellulose-based Graft Copolymers[J]. CIESC Journal, 2009, 17(1): 145 -149 .
[3] 杨全, 朱慎林, 李以圭. Prediction of Critical Endpoints Based on the PR Equation of State[J]. CIESC Journal, 2009, 17(5): 791 -795 .
[4] 赵月春, 易筱筠, 李明华, 刘露, 马伟娟. Biodegradation Kinetics of DDT in Soil under Different Environmental Conditions by Laccase Extract from White Rot Fungi[J]. CIESC Journal, 2010, 18(3): 486 -492 .
[5] 于明志, 隋晓凤, 彭晓峰, 方肇洪. 含湿率对多孔介质热导率测量准确性的影响 [J]. 化工学报, 2008, 59(11): 2768 -2773 .
[6] . PREDISPERSED SOLVENT EXTRACTION──THE STATE-OF-THE-ART REVIEW [J]. CIESC Journal, 2000, 51(S1): 299 -302 .
[7] 官月平,姜波,朱星华,刘会洲. 生物磁性分离研究进展(Ⅰ)磁性载体制备和表面化学修饰 [J]. CIESC Journal, 2000, 51(S1): 315 -319 .
[8] 郑诗礼,张懿,李佐虎. 传统过程工业绿色化的定量评价 [J]. CIESC Journal, 2000, 51(S1): 343 -347 .
[9] 毕明树,王淑兰,丁信伟,罗正鸿. 无约束气云弱点火爆炸压力实验研究 [J]. CIESC Journal, 2001, 52(1): 68 -71 .
[10] 双玥;吴昌宁;颜彬航;程易. 煤粉高温快速裂解过程的颗粒内部传递行为 [J]. CIESC Journal, 2010, 61(12): 3072 -3079 .