化工学报 ›› 2020, Vol. 71 ›› Issue (3): 997-1008.doi: 10.11949/0438-1157.20190630

• 流体力学与传递现象 • 上一篇    下一篇

超长重力热管传热性能实验研究

李庭樑1,2,3,4,岑继文1,2,3,黄文博1,2,3,曹文炅1,2,3,蒋方明1,2,3()   

  1. 1.中国科学院广州能源研究所先进能源系统研究室,广东 广州 510640
    2.中国科学院可再生能源重点实验室,广东 广州 510640
    3.广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
    4.中国科学院大学,北京 100049
  • 收稿日期:2019-06-10 修回日期:2019-10-29 出版日期:2020-03-05 发布日期:2019-11-02
  • 通讯作者: 蒋方明 E-mail:jiangfm@ms.giec.ac.cn
  • 基金资助:
    中国科学院A类战略性先导科技专项(XDA21060700);国家重点研发计划项目(2018YFB1501804);国家自然科学基金项目(41702256);广东省自然科学基金项目(2017A030310328);国家自然科学基金-广东省联合基金项目(U1401232);广东省自然科学基金重大基础培育项目(2014A030308001)

Experimental study on heat transfer performance of super long gravity heat pipe

Tingliang LI1,2,3,4,Jiwen CEN1,2,3,Wenbo HUANG1,2,3,Wenjiong CAO1,2,3,Fangming JIANG1,2,3()   

  1. 1.Laboratory of Advanced Energy Systems, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    2.Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    3.The Guangdong Provincial Key Laboratory of New and Renewable Energy, Guangzhou 510640, Guangdong, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-06-10 Revised:2019-10-29 Online:2020-03-05 Published:2019-11-02
  • Contact: Fangming JIANG E-mail:jiangfm@ms.giec.ac.cn

摘要:

用于干热岩热能开采的增强型地热系统存在投资高、风险大、工质漏损、设备腐蚀、地面沉降等问题,利用超长重力热管进行地热开采可以有效规避这些问题。搭建了超长重力热管实验平台,实验研究了超长重力热管的适宜充液量、运行的稳定性和不同冷却水流量下的传热性能并分析了其可能的原因;研究表明在恒定加热功率下,热管的合适充液量为蒸发容积的40%左右,在运行期间,与传统短热管相比,超长热管展现出了强烈的振荡性,振荡频率与加热功率和充液量息息相关;在恒定加热功率下,随着冷却水流量的增加,热管采出功率先增加后逐渐趋于平缓。此外,特别探讨了热管在极端充液量下的传热性能,研究表明在极端充液量下,热管底部形成一定高度的气柱,由于气柱的持续存在导致热量无法传递到热管顶端。实验结果初步证实了超长重力热管在开采干热岩热能上的可行性,为下一步的实际应用提供了基础支持。

关键词: 干热岩, 超长, 重力热管, 蒸发, 传热, 实验验证

Abstract:

There are many problems in the enhanced geothermal system used for dry hot rock thermal energy exploitation, such as high investment, high risk, working medium leakage, equipment corrosion, land subsidence,etc. Using super long gravity heat pipe to mine hot dry rock geothermal energy can effectively avoid these problems. In this paper, an experimental platform for super long gravity heat pipe is built. The suitable liquid filling capacity, stability of operation and heat transfer performance under different cooling water flow rates are studied experimentally. The possible causes are analyzed. The research shows that under the constant power, the suitable liquid filling amount of the heat pipe is about 40% of the total liquid filling amount of the evaporation section. During operation, compared with the conventional short heat pipe, the super long heat pipe exhibits strong oscillation, oscillation frequency and heating power and charging. The amount of liquid is closely related. At a constant heating power, as the flow rate of the cooling water increases, the power of the heat pipe increases first and then gradually becomes gentle. In addition, the heat transfer performance of the heat pipe under the extreme liquid filling amount is especially discussed. The research shows that under the extreme liquid filling amount, the gas column forms a certain height at the bottom of the heat pipe, and the heat cannot be transferred to the top of the heat pipe due to the continuous existence of the gas column. The experimental results preliminarily verify the feasibility about using the super long gravity heat pipe to mine hot dry rock geothermal energy and offer fundamental supports for the future practical applications.

Key words: hot dry rock, super long, gravity heat pipe, evaporation, heat transfer, experimental validation

中图分类号: 

  • TK 172

图1

超长重力热管实验系统实物图"

图2

超长重力热管实验系统示意图"

图3

不同充液量下热管的采热性能(冷却水流量为5.5 ml/s)"

图4

不同充液量下热管的采热性能(加热功率为800 W,冷却水流量为6.0 ml/s)"

表1

不同充液量下积液深度和采出功率(加热功率为600 W,冷却水流量为5.5 ml/s)"

充液量/ml积液深度/cm采出功率/W
20088.2460.4
300132.2474.8
400176.4499.8
600264.5451.9
800352.6446.6
1000440.9445.5
1300573.0434.9
1600705.3418.6
25001102.0286.2
50002204.00

图5

不同充液量下积液深度和采出功率(加热功率为600 W,冷却水流量为5.5 ml/s)"

表2

理论蒸发温度与实际蒸发温度(加热功率为600 W,循环流量为5.5 ml/s)"

充液量/ml积液深度/cm静水压/kPa绝热段温度/℃绝热段饱和蒸汽压力/kPa蒸发段总压力/kPa理论蒸发温度/℃热管实际蒸发温度/℃
20088.28.853.214.523.363.468.2
300132.213.250.812.926.165.966.8
400176.417.651.413.230.969.871.8
600264.526.550.912.939.375.574.7
800352.635.351.313.248.580.581.5
1000440.944.161.221.165.288.190.1
1300573.057.350.412.669.989.990.8
1600705.370.548.211.381.894.195.3
25001102110.246.010.1120.3104.8102.5

图6

理论蒸发温度与实际蒸发温度对比(加热功率为600 W,冷却水流量为5.5 ml/s)"

图7

不同充液量下各点温度随时间变化曲线(冷却水流量为5.5 ml/s)"

图8

不同加热功率下热管各测点温度变化情况(充液量为5000 ml,冷却水流量为5.5 ml/s)"

图9

加热功率为600 W(a)和停止加热(b)后热管各点温度随时间变化情况(充液量为5000 ml,冷却水流量为5.5 ml/s)"

图10

不同冷却水流量下热管的采热性能(充液量为400 ml,加热功率为800 W)"

图11

蒸发段温度与绝热段温度随循环流量变化(充液量为400 ml,加热功率为800 W)"

图12

不同加热功率下热管的振荡频率(充液量为400 ml,冷却水流量为6.0 ml/s)"

图13

不同加热功率下热管的振荡频率(充液量为1000 ml,循环流量为6.0 ml/s)"

1 汪集旸,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31.
Wang J Y,Hu S B,Pang Z H,et al.Estimate of geothermal resources potential for hot dry rock in the continental area of China[J].Science & Technology Review,2012,30(32):25-31.
2 郭剑,陈继良,曹文炅,等.增强型地热系统研究综述[J].电力建设,2014,35(4):10-24.
Guo J,Chen J L,Cao W J,et al.Research review on enhanced geothermal system[J].Electric Power Construction,2014,35(4):10-24.
3 许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45.
Xu T F,Zhang Y J,Zeng S F,et al.Technology progress in an enhanced geothermal system(hot dry rock)[J].Science & Technology Review,2012,30(32):42-45.
4 蔺文静,刘志明,马峰,等.我国陆区干热岩资源潜力估算[J].地球学报,2012,33(5):807-811.
Lin W J,Liu Z M,Ma F,et al.An estimation of HDR resources in China’s mainland[J].Acta Geoscientica Sinica,2012,33(5):807-811.
5 Norbeck J,Mcclure M,Horne R.Analysis of hydromechanical reservoir response during fluid circulation at the Fenton Hill Enhanced Geothermal System test site[C]//Proceedings of 38th New Zealand Geothermal Workshop.Auckland, New Zealand,2016.
6 Tester J W,And erson B J,Batchelor A S,et al.The Future of Geothermal Energy-Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century[M].Cambridge MA:Massachusetts Institute of Technology,2006.
7 Richards H,Parker R,Green A,Jones R,et al.The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985—1988)[J].Geothermics,1994,23(2):73-109.
8 Parker R.The Rosemanowes HDR project 1983—1991[J].Geothermics,1999,28(4/5):603-615.
9 Genter A,Evans K,Cuenot N,Fritsch D,et al.Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J].Comptes Rendus Geoscience,2010,342(7/8):502-516.
10 Karrech A.Non-equilibrium thermodynamics for fully coupled thermal hydraulic mechanical chemical processes[J].Journal of the Mechanics and Physics of Solids,2013,61(3):819-837.
11 Taron J,Elsworth D.Coupled mechanical and chemical processes in engineered geothermal reservoirs with dynamic permeability[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(8):1339-1348.
12 Sanyal S K,Morrow J W,Butler S J,et al.Cost of electricity from enhanced geothermal systems[C]//Thirty-Second Workshop on Geothermal Reservoir Engineering.2007,32:1-11.
13 陆川,王贵玲.干热岩研究现状与展望[J].科技导报,2015,33(19):13-21.
Lu C,Wang G L.Current status and prospect of hot dry rock research[J].Science & Technology Review,2015,33(19):13-21.
14 Chen D,Wyborn D.Habanero field tests in the Cooper Basin, Australia: a proof-of-concept for EGS[J].Geothermal Resources Council Transactions,2009,33(1):159-164.
15 Johnston I W,Narsilio G A,Colls S.Emerging geothermal energy technologies[J].KSCE Journal of Civil Engineering,2011,15(4):643-653.
16 刘明言.地热流体的腐蚀与结垢控制现状[J].新能源进展,2015,3(1):38-46.
Liu M Y.A review on controls of corrosion and scaling in geothermal fluids[J].Advances in New and Renewable Energy,2015,3(1):38-46.
17 尤伟静,刘延锋,郭明晶.地热资源开发利用过程中的主要环境问题 [J].安全与环境工程,2013,20(2):24-28.
You W J,Liu Y F,Guo M J.Environmental issues in the development and utilization of geothermal resources[J].Safety and Environmental Engineering,2013,20(2):24-28.
18 张劲草,辛公明,陈岩,等.蒸发段和冷凝段变化对重力热管性能的影响[J].化工学报,2017,68(4):1343-1348.
Zhang J C,Xin G M,Chen Y,et al.Influence of changing evaporator/condenser section on operation characteristics of gravity heat pipe[J].CIESC Journal,2017,68(4):1343-1348.
19 Bachmann C E,Wiemer S,Woessner J,et al.Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems[J].Geophysical Journal International,2011,186(2):793-807.
20 Giardini D.Geothermal quake risks must be faced[J].Nature,2009,462(7275):848.
21 Srimuang W,Amatachaya P.A review of the applications of heat pipe heat exchangers for heat recovery[J].Renewable and Sustainable Energy Reviews,2012,16(6):4303-4315.
22 Faghri A.Heat pipes: review, opportunities and challenges[J].Frontiers in Heat Pipes (FHP),2014,5(1):1-48.
23 Tien C,Sun K.Minimum meniscus radius of heat pipe wicking materials[J].International Journal of Heat and Mass Transfer,1971,14(11):1853-1855.
24 孙荟晶,孙世梅.热管技术在可再生能源利用中的研究与探索[J].现代化工,2007,27(S2):517-520.
Sun H J,Sun S M.Utilization and exploration of heat pipe technology for renewable energy source[J].Modern Chemical Industry,2007,27(S2):517-520.
25 Seo J,Bang I C,Lee J Y.Length effect on entrainment limit of large-L/D vertical heat pipe[J].International Journal of Heat and Mass Transfer,2016,97:751-759.
26 张军,张辉,张红,等.地热热管融雪系统应用研究[J].太阳能学报,2011,32(12):1822-1826.
Zhang J,Zhang H,Zhang H,et al.Application study of geothermic heat pipe snow melting system [J].Acta Energiae Solaris Sinica,2011,32(12):1822-1826.
27 杨永平,魏庆朝,周顺华,等.热管技术及其在多年冻土工程中的应用研究[J].岩土工程学报,2005,27(6):698-706.
Yang Y P,Wei Q C,Zhou S H,et al.Thermosyphon technology and its application in permafrost[J].Chinese Journal of Geotechnical Engineering,2005,27(6):698-706.
28 张玉丰,吴晓东,李伟超.重力热管井筒伴热方式可行性分析[J].石油勘探与开发,2007,34(4):483-487.
Zhang Y F,Wu X D,Li W C.Feasibility of two-phase closed thermosyphon heating method [J].Petroleum Exploration and Development,2007,34(4):483-487.
29 Kusaba S,Suzuki H,Hirowatari K,et al.Extraction of geothermal energy and electric power generation using a large scale heat pipe[C]//Proceedings of World Geothermal Congress.2000:3489-3494.
30 蒋方明,黄文博,曹文炅.干热岩热能的热管开采方案及其技术可行性研究[J].新能源进展,2017,5(6):426-434.
Jiang F M,Huang W B,Cao W J.Mining hot dry rock geothermal energy by heat pipe: conceptual design and technical feasibility study [J].Advances in New and Renewable Energy,2017,5(6):426-434.
[1] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[2] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[3] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[4] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[5] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
[6] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[7] 李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
[8] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[9] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[10] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[11] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[12] 刘燕青, 胡听听, 鲁落义, 王维, 邹昀, 童张法. PDMS/ZSM-5膜的制备及渗透汽化分离水中乙酸正丁酯和乙酸乙酯[J]. 化工学报, 2020, 71(2): 843-853.
[13] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[14] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[15] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈乐, 刘晓勤. π-Complexation Mesoporous Adsorbents Cu-MCM-48 for Ethylene-Ethane Separation[J]. CIESC Journal, 2008, 16(4): 570 -574 .
[2] 阳庆元, 许青, 刘蓓, 仲崇立, Smit Berend. Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks:Effect of Catenation and Electrostatic Interactions[J]. CIESC Journal, 2009, 17(5): 781 -790 .
[3] 蔡子琦, 包雨云, 高正明. Hydrodynamic Behavior of a Single Bubble Rising in Viscous Liquids[J]. CIESC Journal, 2010, 18(6): 923 -930 .
[4] 李会泉,李佐虎,姚平经. 低温蒸馏塔与冷冻系统的热泵流程集成 [J]. CIESC Journal, 2000, 51(S1): 231 -235 .
[5] . 持久性有机污染物研究中心在清华成立 [J]. CIESC Journal, 2001, 52(11): 1011 .
[6] 张政,谢灼利. 流体-固体两相流的数值模拟 [J]. CIESC Journal, 2001, 52(1): 1 -12 .
[7] 焦波;邱利民;陆军亮.

环状流起始点初始携带份额的分析计算

[J]. CIESC Journal, 2008, 59(11): 2750 -2755 .
[8] 蒋赣, 方玉堂, 张紫超. 蜂窝状块体硅胶/分子筛复合物吸附性能 [J]. 化工学报, 2008, 59(10): 2536 -2540 .
[9] 刘春林, 周如东, 吴盾, 陈玲红. 含异氰酸酯基的低聚物和聚醚增容改性POM/TPU共混物 [J]. 化工学报, 2008, 59(9): 2377 -2383 .
[10] 罗时杰,钱维新,成振源,苏国醒,沙致中,张月琴. D-核糖工业制备方法的研究Ⅰ D-阿拉伯糖酸钙的制备 [J]. CIESC Journal, 1965, 16(1): 35 -40 .