化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4409-4428.doi: 10.11949/0438-1157.20190615

• 综述与专论 • 上一篇    下一篇

氧电极金属单原子催化剂的研究进展

王尧1,2(),唐艺芸1,3   

  1. 1.四川大学新能源与低碳技术研究院,四川 成都 610207
    2.后续能源材料与器件教育部工程中心,四川 成都 610207
    3.四川大学材料科学与工程学院,四川 成都 610207
  • 收稿日期:2020-05-29 修回日期:2020-07-09 出版日期:2020-10-05 发布日期:2019-11-07
  • 通讯作者: 王尧 E-mail:wangyao516@scu.edu.cn
  • 作者简介:王尧(1991—),男,博士,副研究员,于2009.9—2018.6在重庆大学分别获得学士、硕士和博士学位,wangyao516@scu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21908148);四川省科技计划(2020YJ0088)

Advances in single-atom catalysts for oxygen electrodes

Yao WANG1,2(),Yiyun TANG1,3   

  1. 1.Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610207, Sichuan, China
    2.Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610207, Sichuan, China
    3.College of Materials Science and Engineering, Sichuan University, Chengdu 610207, Sichuan, China
  • Received:2020-05-29 Revised:2020-07-09 Online:2020-10-05 Published:2019-11-07
  • Contact: Yao WANG E-mail:wangyao516@scu.edu.cn

摘要:

燃料电池和金属-空气电池作为目前最具发展前景的能量转换和储存设备,对于缓解人类发展所面临的能源与环境问题大有裨益。然而,较差的氧电极反应,如燃料电池中的氧还原反应以及锌空电池中的氧还原及析氧反应,却限制着这两类装置的高效运行。近年来,人们提出了利用单原子催化剂(SACs)来提高氧电极反应的反应动力学。因此,针对两类氧电极反应,本综述根据构成活性位点的不同金属元素进行了分类总结,重点关注了各类催化剂的共性及进展。同时,还对具有双功能的催化剂及其在锌空电池的应用进行了总结。最后,针对SACs目前存在的问题和未来的发展方向提出了建议,旨在为单原子氧电极催化剂的设计及发展指明道路。

关键词: 单原子催化剂, 氧还原反应, 析氧反应, 双功能催化剂, 燃料电池, 锌空电池

Abstract:

As the most promising energy conversion and storage devices, fuel cells and metal-air batteries are of great benefit in alleviating the energy and environmental problems. However, the sluggish oxygen electrode reactions, including oxygen reduction reaction (ORR) for fuel cell and ORR couple with oxygen evolution reaction (OER) for zinc-air batteries, seriously limit the efficient of both types of devices. In recent years, single-atoms catalysts (SACs) have been proposed to improve the kinetics of oxygen electrode reaction. Therefore, for these two types of oxygen electrode reactions, this review firstly summarized their possible mechanism. Then, the SACs were classified by the different metal elements for both ORR and OER. Thus, noble-metal-based and non-noble-metal-based catalysts have been summarized in these two reactions. At the same time, a summary of the dual-function catalyst and its application in zinc air batteries is also given. Finally, in view of the current problems and future development directions of SACs, suggestions are put forward, aiming to pave the way for the design and development of monoatomic oxygen electrode catalysts.

Key words: single-atom catalyst, oxygen reduction reaction, oxygen evolution reaction, bifunctional catalyst, fuel cells, zinc-air batteries

中图分类号: 

  • TQ 028.8
1 Wang X X, Cullen D A, Pan Y T, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Adv. Mater., 2018, 30(11): 1706758.
2 Chen M X, Zhu M, Zuo M, et al. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles[J]. Angew. Chem. Int. Ed., 2020, 59(4): 1627-1633.
3 Han J, Meng X, Lu L, et al. Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries[J]. Adv. Funct. Mater., 2019, 29(41): 1808872.
4 Yang L, Shi L, Wang D, et al. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery[J]. Nano Energy, 2018, 50: 691-698.
5 Zhang H, Zhou W, Chen T, et al. A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction[J]. Energy Environ. Sci., 2018, 11(8): 1980-1984.
6 Zhang D, Chen W, Li Z, et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction[J]. Chem. Commun., 2018, 54(34): 4274-4277.
7 Yang S, Yu Y, Dou M, et al. Two-dimensional conjugated aromatic networks as high-site-density and single-atom electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 58(41): 14724-14730.
8 Lyu X, Li G, Chen X, et al. Atomic cobalt on defective bimodal mesoporous carbon toward efficient oxygen reduction for zinc-air batteries[J]. Small Methods, 2019, 3(9): 1800450.
9 Li J, Liu H, Wang M, et al. Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn-air batteries[J]. Chem. Commun., 2019, 55(3): 334-337.
10 Bai L, Hsu C S, Alexander D T L, et al. A cobalt-iron double-atom catalyst for the oxygen evolution reaction[J]. J. Am. Chem. Soc., 2019, 141(36): 14190-14199.
11 Ji D, Fan L, Li L, et al. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries[J]. Adv. Mater., 2019, 31(16): 1808267.
12 Peng P, Shi L, Huo F, et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom[J]. Science Advances, 2019, 5(8): eaaw2322.
13 Lin Y, Liu P, Velasco E, et al. Fabricating single-atom catalysts from chelating metal in open frameworks[J]. Adv. Mater., 2019, 31(18): 1808193.
14 Chen Y, Ji S, Wang Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2017, 56(24): 6937-6941.
15 Han Y, Wang Y G, Chen W, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction[J]. J. Am. Chem. Soc., 2017, 139(48): 17269-17272.
16 Wang Z, Xu S M, Xu Y, et al. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis[J]. Chem. Sci., 2019, 10(2): 378-384.
17 Liu L, Su H, Tang F, et al. Confined organometallic Au1Nx single-site as an efficient bifunctional oxygen electrocatalyst[J]. Nano Energy, 2018, 46: 110-116.
18 Li B Q, Zhao C X, Chen S, et al. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries[J]. Adv. Mater., 2019, 31(19): 1900592.
19 Yan J, Kong L, Ji Y, et al. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation[J]. Nat. Commun., 2019, 10(1): 2149.
20 Li W, Min C, Tan F, et al. Bottom-up construction of active sites in a Cu-N4-C catalyst for highly efficient oxygen reduction reaction[J]. ACS Nano, 2019, 13(3): 3177-3187.
21 Luo E, Zhang H, Wang X, et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media[J]. Angew. Chem. Int. Ed., 2019, 58(36): 12469-12475.
22 Han G, Zheng Y, Zhang X, et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction[J]. Nano Energy, 2019, 66: 104088.
23 Cui L, Cui L, Li Z, et al. A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells[J]. J. Mater. Chem. A, 2019, 7(28): 16690-16695.
24 Chen Z, Gong W, Liu Z, et al. Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity[J]. Nano Energy, 2019, 60: 394-403.
25 Yang S, Tak Y J, Kim J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catal., 2017, 7(2): 1301-1307.
26 Liu J, Jiao M, Mei B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 58(4): 1163-1167.
27 Babu D D, Huang Y, Anandhababu G, et al. Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation[J]. J. Mater. Chem. A, 2019, 7(14): 8376-8383.
28 Yao Y, Hu S, Chen W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4): 304-313.
29 Li P, Wang M, Duan X, et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides[J]. Nat. Commun., 2019, 10(1): 1711.
30 Cao L, Luo Q, Chen J, et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849.
31 Wang C, Zhang H, Wang J, et al. Atomic Fe embedded in carbon nanoshells-graphene nanomeshes with enhanced oxygen reduction reaction performance[J]. Chem. Mater., 2017, 29(23): 9915-9922.
32 Sun H, Wang M, Du X, et al. Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction[J]. J. Mater. Chem. A, 2019, 7(36): 20952-20957.
33 Muthukrishnan A, Nabae Y, Okajima T, et al. Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts[J]. ACS Catal., 2015, 5(9): 5194-5202.
34 Qiu X, Yan X, Pang H, et al. Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction[J]. Adv. Sci., 2019, 6(2): 1801103.
35 Yang Z, Wang Y, Zhu M, et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells[J]. ACS Catal., 2019, 9(3): 2158-2163.
36 Xiao F, Xu G L, Sun C J, et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction[J]. Nano Energy, 2019, 61: 60-68.
37 Li J C, Cheng M, Li T, et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions[J]. J. Mater. Chem. A, 2019, 7(24): 14478-14482.
38 He T, Zhang Y, Chen Y, et al. Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries[J]. J. Mater. Chem. A, 2019, 7(36): 20840-20846.
39 Cheng Y, He S, Lu S, et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells[J]. Adv. Sci., 2019, 6(10): 1802066.
40 Han X, Ling X, Yu D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49): 1905622.
41 Cheng Y, Dai J, Song Y, et al. Nanostructure of Cr2CO2 MXene supported single metal atom as an efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Appl. Energy Mater., 2019, 2(9): 6851-6859.
42 Zhang H, Liu Y, Chen T, et al. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon Matrix[J]. Adv. Mater., 2019, 31(48): 1904548.
43 Holton O T, Stevenson J W. The role of platinum in proton exchange membrane fuel cells[J]. Platinum Metals Review, 2013, 57(4): 259-271.
44 Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1/2): 83-89.
45 Man I C, Su H Y, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
46 Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat. Chem., 2011, 3(8): 634-641.
47 Liu J, Jiao M, Lu L, et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction[J]. Nat. Commun., 2017, 8: 15938.
48 Li S, Liu J, Yin Z, et al. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction[J]. ACS Catal., 2020, 10(1): 907-913
49 Xiao M, Gao L, Wang Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. J. Am. Chem. Soc., 2019, 141(50): 19800–19806
50 Zhang C, Sha J, Fei H, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium[J]. ACS Nano, 2017, 11(7): 6930-6941.
51 Liu Q, Li Y, Zheng L, et al. Sequential synthesis and active-site coordination principle of precious metal single‐atom catalysts for oxygen reduction reaction and PEM fuel cells[J]. Adv. Energy Mater., 2020, 10: 2000689.
52 Xiao M, Zhu J, Li G, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 58(28): 9640-9645.
53 Al-Zoubi T, Zhou Y, Yin X, et al. Preparation of nonprecious metal electrocatalysts for the reduction of oxygen using a low-temperature sacrificial metal[J]. J. Am. Chem. Soc., 2020, 142(12): 5477-5481
54 Zhang J, Zhao Y, Chen C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions[J]. J. Am. Chem. Soc., 2019, 141(51): 20118-20126
55 Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination[J]. J. Am. Chem. Soc., 2020, 142(5): 2404-2412
56 Hou C C, Zou L, Sun L, et al. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction[J].Angew. Chem. Int. Ed., 2020, 59(19): 7384-7389
57 Zhang Z, Gao X, Dou M, et al. Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction[J]. Small, 2017, 13(22): 1604290.
58 Shen H, Gracia-Espino E, Ma J, et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media[J]. Angew. Chem. Int. Ed., 2017, 56(44): 13800-13804.
59 Jiang W J, Hu W L, Zhang Q H, et al. From biological enzyme to single atomic Fe-N-C electrocatalyst for efficient oxygen reduction[J]. Chem. Commun., 2018, 54(11): 1307-1310.
60 Jia N, Xu Q, Zhao F, et al. Fe/N Co doped carbon nanocages with single-atom feature as efficient oxygen reduction reaction electrocatalyst[J]. ACS Appl. Energy Mater., 2018, 1(9): 4982-4990.
61 Cheng C, Li S, Xia Y, et al. Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries[J]. Adv. Mater., 2018:30(40): 1802669.
62 Li Q, Chen W, Xiao H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction[J]. Adv. Mater., 2018, 30(25): 1800588.
63 Jiao L, Wan G, Zhang R, et al. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media[J]. Angew. Chem. Int. Ed., 2018, 57(28): 8525-8529.
64 Han Y, Wang Y, Xu R, et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal[J]. Energy Environ. Sci., 2018, 11(9): 2348-2352.
65 Jiang R, Li L, Sheng T, et al. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities[J]. J. Am. Chem. Soc., 2018, 140(37): 11594-11598.
66 Yang Z K, Yuan C Z, Xu A W. A rationally designed Fe-tetrapyridophenazine complex: a promising precursor to a single-atom Fe catalyst for an efficient oxygen reduction reaction in high-power Zn-air cells[J]. Nanoscale, 2018, 10(34): 16145-16152.
67 Li J C, Yang Z Q, Tang D M, et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction[J]. NPG Asia Mater., 2018, 10(1): e461.
68 Zhang Z, Sun J, Wang F, et al. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework[J]. Angew. Chem. Int. Ed., 2018, 57(29): 9038-9043.
69 Ao X, Zhang W, Li Z, et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters[J]. ACS Nano, 2019, 13(10): 11853-11862.
70 Chen Y, Li Z, Zhu Y, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Adv. Mater., 2019, 31(8): 1806312.
71 Zhao L, Zhang Y, Huang L B, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts[J]. Nat. Commun., 2019, 10(1): 1278.
72 Miao Z, Wang X, Tsai M C, et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy[J]. Adv. Energy Mater., 2018, 8(24): 1801226.
73 Chen Y, Ji S, Zhao S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell[J]. Nat. Commun., 2018, 9(1): 5422.
74 Yang Z K, Yuan C Z, Xu A W. Confined pyrolysis within a nanochannel to form a highly efficient single iron site catalyst for Zn-air batteries[J]. ACS Energy Lett., 2018, 3(10): 2383-2389.
75 Chen S, Zhang N, Narváez Villarrubia C W, et al. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media[J]. Nano Energy, 2019, 66: 104164.
76 Liu Q, Liu X, Zheng L, et al. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells[J]. Angew. Chem. Int. Ed., 2018, 57(5): 1204-1208.
77 Zhu C, Shi Q, Xu B Z, et al. Hierarchically porous M-N-C (M=Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance[J]. Adv. Energy Mater., 2018, 8(29): 1801956.
78 Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew. Chem. Int. Ed., 2016, 55(36): 10800-10805.
79 Cheng Q, Yang L, Zou L, et al. Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction[J]. ACS Catal., 2017, 7(10): 6864-6871.
80 Wang J, Huang Z, Liu W, et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. J. Am. Chem. Soc., 2017, 139(48): 17281-17284.
81 Han A, Chen W, Zhang S, et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts[J]. Adv. Mater., 2018, 30(15): 1706508.
82 Jiang H, He Q, Wang C, et al. Definitive structural identification toward molecule-type sites within 1D and 2D carbon-based catalysts[J]. Adv. Energy Mater., 2018, 8(19): 1800436.
83 Wang Y, Chen L, Mao Z, et al. Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions[J]. Science Bulletin, 2019, 64(15): 1095-1102.
84 Li J, Chen S, Yang N, et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angew. Chem. Int. Ed., 2019, 58(21): 7035-7039.
85 Qu Y, Li Z, Chen W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nat. Catal., 2018, 1(10): 781-786.
86 Li F, Han G F, Noh H J, et al. Boosting oxygen reduction catalysis with abundant copper single atom active sites[J]. Energy Environ. Sci., 2018, 11(8): 2263-2269.
87 Shang H, Zhou X, Dong J, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity[J]. Nat. Commun., 2020, 11: 3049.
88 Wang Q, Huang X, Zhao Z L, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(16): 7425-7433.
89 Jiang K, Luo M, Peng M, et al. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation[J]. Nat. Commun., 2020, 11: 2701.
90 Zhang Z, Feng C, Liu C, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts[J]. Nat. Commun., 2020, 11: 1215.
91 Zhang Y, Wu C, Jiang H, et al. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte[J]. Adv. Mater., 2018, 30(18): 1707522.
92 Cai C, Han S, Wang Q, et al. Direct observation of yolk-shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency[J]. ACS Nano, 2019, 13(8): 8865-8871.
93 Zhang J, Liu J, Xi L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(11): 3876-3879.
94 Lin C, Zhao Y, Zhang H, et al. Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction[J]. Chem. Sci., 2018, 9(33): 6803-6812.
95 Zhang L, Jia Y, Gao G, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions[J]. Chem, 2018, 4(2): 285-297.
96 Sun H, Liu S, Wang M, et al. Updating the intrinsic activity of a single-atom site with a P-O bond for a rechargeable Zn-air battery[J]. ACS Appl. Mater. Interfaces, 2019, 11(36): 33054-33061.
97 Zhang Y, Wang Y, Liu L, et al. Robust bifunctional lanthanide cluster based metal-organic frameworks (MOFs) for tandem Deacetalization-Knoevenagel reaction[J]. Inorg. Chem., 2018, 57(4): 2193-2198.
98 Zheng Y, Jiao Y, Zhu Y, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. J. Am. Chem. Soc., 2017, 139(9): 3336-3339.
99 Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat. Catal., 2018, 1(1): 63-72.
100 Zeng X, Shui J, Liu X, et al. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J]. Adv. Energy Mater., 2018, 8(1): 1701345.
101 Pan Y, Liu S, Sun K, et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(28): 8614-8618.
102 Wu J, Zhou H, Li Q, et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis[J]. Adv. Energy Mater., 2019, 9(22): 1900149.
103 Amiinu I S, Liu X, Pu Z, et al. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries[J]. Adv. Funct. Mater., 2018, 28(5): 1704638.
104 Zang W, Sumboja A, Ma Y, et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes[J]. ACS Catal., 2018, 8(10): 8961-8969.
105 Li S, Cheng C, Zhao X, et al. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(7): 1856-1862.
106 Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angew. Chem. Int. Ed., 2016, 55(6): 2058-2062.
107 Han X, Ling X, Wang Y, et al. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries[J]. Angew. Chem. Int. Ed., 2019, 58(16): 5359-5364.
108 Tang C, Wang B, Wang H F, et al. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Adv. Mater., 2017, 29(37): 1703185.
[1] 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453.
[2] 陈海涛, 乔金硕, 王振华, 孙旺, 李海军, 孙克宁. 原位双金属纳米颗粒YST复合阳极的构筑及其直接碳催化性能研究[J]. 化工学报, 2020, 71(9): 4270-4281.
[3] 马佳欢, 杨微微, 白羽, 孙克宁. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030.
[4] 张伶, 陈红梅, 魏子栋. 过渡金属氧化物催化析氧反应研究进展[J]. 化工学报, 2020, 71(9): 3876-3904.
[5] 肖扬, 徐春明, 杨晓霞, 张立红, 孙旺, 乔金硕, 王振华, 孙克宁. NiMn2O4尖晶石氧化物阴极的制备及电化学性能研究[J]. 化工学报, 2020, 71(9): 4292-4302.
[6] 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257.
[7] 穆嫒萍, 叶丁丁, 陈蓉, 朱恂, 廖强. 基于棉线的微流体燃料电池阳极传质特性LB模拟[J]. 化工学报, 2020, 71(7): 3278-3287.
[8] 赵洪波, 刘杰, 马彪, 郭强, 刘晓辉, 潘凤文. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150.
[9] 黎方菊, 吴伟, 汪双凤. PEMFC带沟槽气体扩散层内传输特性孔隙网络模拟[J]. 化工学报, 2020, 71(5): 1976-1985.
[10] 赵强, 郭航, 叶芳, 马重芳. 质子交换膜燃料电池流场板研究进展[J]. 化工学报, 2020, 71(5): 1943-1963.
[11] 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
[12] 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574.
[13] 李存璞, 王建川, 魏子栋. 电化学反应器隔膜材料的分子设计与介尺度策略[J]. 化工学报, 2020, 71(10): 4490-4501.
[14] 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121.
[15] 陈稳稳,刘中良,姜克隽,侯俊先,娄晓歌,李艳霞,廖强,朱恂. 微生物燃料电池处理含柠檬酸钠废水的研究[J]. 化工学报, 2019, 70(S2): 322-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵长伟,马沛生,夏淑倩. 293.15K到333.15K温度下一些氨基酸及其相应基团水溶液中的偏摩尔体积研究[J]. CIESC Journal, 2004, 12(4): 521 -526 .
[2] 华卉, 陈祎玮, 金万勤, 徐南平. 自组装普鲁士蓝膜修饰电极的制备及表征 [J]. 化工学报, 2007, 58(8): 2056 -2061 .
[3] 夏光祥. 褐煤自氨性溶液中吸附铜、镍、钴的物理化学研究 [J]. CIESC Journal, 1985, 36(2): 196 -203 .
[4] 孙世梅;张红.

封闭空间内小型热管换热器模拟与实验研究

[J]. CIESC Journal, 2005, 56(9): 1639 -1643 .
[5] 马学虎;宋天一;兰忠;周兴东;杨锦宗. 固液界面能差效应与冷凝传热强化研究进展 [J]. CIESC Journal, 2006, 57(8): 1763 -1775 .
[6] 李湘;李忠;罗灵爱 .

程序升温脱附活化能估算新模型

[J]. CIESC Journal, 2006, 57(2): 258 -262 .
[7] 王琨,傅金彦,刘洪来,胡英. 静态蒸汽总压法研究二氟二氯甲烷-乙醚、乙醚-丙酮二元系的恒温汽液平衡 [J]. CIESC Journal, 1992, 43(6): 652 -657 .
[8] 马学虎,徐敦颀,林纪方. 超薄聚合物表面与滴状冷凝的研究 [J]. CIESC Journal, 1993, 44(2): 165 -170 .
[9] 胡桂林;樊建人;岑可法 . 质子交换膜燃料电池动态过程的数值模拟 [J]. CIESC Journal, 2006, 57(11): 2693 -2698 .
[10] 王如竹. 吸附式制冷新技术 [J]. CIESC Journal, 2000, 51(4): 435 -442 .