化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3663-3676.doi: 10.11949/0438-1157.20190614

• 综述与专论 • 上一篇    下一篇

旋转填充床反应器流体流动可视化研究进展

刘易(),武威,罗勇,初广文(),邹海魁,陈建峰   

  1. 北京化工大学化学工程学院, 教育部超重力工程研究中心,北京 100029
  • 收稿日期:2019-06-02 修回日期:2019-09-22 出版日期:2019-10-05 发布日期:2019-09-29
  • 通讯作者: 初广文 E-mail:944675433@qq.com;chugw@mail.buct.edu.cn
  • 作者简介:刘易(1991—),男,博士后,944675433@qq.com
  • 基金资助:
    国家自然科学基金项目(21725601)

Visual study of fluid flow in rotating packed bed reactors: a review

Yi LIU(),Wei WU,Yong LUO,Guangwen CHU(),Haikui ZOU,Jianfeng CHEN   

  1. Research Center of the Ministry of Education for High Gravity Engineering and Technology, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2019-06-02 Revised:2019-09-22 Online:2019-10-05 Published:2019-09-29
  • Contact: Guangwen CHU E-mail:944675433@qq.com;chugw@mail.buct.edu.cn

摘要:

旋转填充床反应器是一种典型过程强化装置,对化工过程中的传质与混合过程具有较好的强化作用。流体流动作为旋转填充床反应器中最为基础的性质,对研究、优化旋转填充床反应器的结构和性能至关重要。光学成像技术与数值模拟作为研究旋转填充床反应器中流体力学性质的重要手段在近年来得到了飞速发展。对近三十年来,旋转填充床反应器可视化研究进行了综述,从早期光学成像开始,在此基础上引入早期计算流体力学模拟,直至现在高速数码摄像可视化和基于真实结构的模拟。对旋转填充床的可视化观测从填料表面逐渐向填料内部发展,对其数值模拟从初步的数学模型发展到包含详细填料几何结构、详细流体特性的流动模拟。现有研究已对填料区、空腔区中的流体流动有了较为详细的描述。

关键词: 旋转填充床, 计算流体力学, 可视化, 流体流动

Abstract:

The rotating packed bed (RPB) reactor is a typical process strengthening device, which has an active effect on the mass transfer and mixing process. The fluid flow behavior as one of the most fundamental property in a rotating packed bed reactor is essential to the study and optimization of the RPB reactor. Optical imaging technology and numerical simulation have been developed rapidly in recent years as important means to study hydrodynamic characteristics in RPB reactors. In this work, the visualization researches of RPB reactor in recent 30 years have been reviewed. The visualization research of RPB gradually develops from the surface of the packing zone to the inside of the packing zone. Up to now, the fluid flow in the packing and cavity zones can be described, but the simulation of mass transfer and mixing processes and accurate visual experiment still need to be developed deeply.

Key words: rotating packed bed, computational fluid dynamics, visual study, fluid flow

中图分类号: 

  • TQ 028.8

图1

旋转填充床反应器的结构"

图2

旋转填充床反应器反应器纵截面(a),旋转填充床反应器中三种典型流型(b),转速400 r/min(c)、900 r/min(d)和1200 r/min(e)条件下液体分布状况[24]"

图3

R-S波纹丝网填料(a)和泡沫镍填料(b)表面的流体流动状况;同步摄像实验装置(c)和典型实时图像(左图为湿填料,右图为干填料)(d)[26]"

图4

旋转填充床反应器中气体速度分布[27]"

图5

旋转填充床反应器中几何结构、速度云图和气体分布不均因子[28]"

图6

旋转填充床反应器填料区小方块模型[30]"

图7

旋转填充床反应器几何结构、网格划分、气相流线和液相流线[31]"

图8

旋转填充床反应器填料区二维结构和液体分布云图[32]"

图9

液体在旋转填充床反应器空腔区流动形态[33]"

图10

旋转填充床反应器空腔区中典型流形、液体分布状况、拍摄区域及液体运动状况示意图[35,36]"

图11

规整波纹丝网填料[1]"

图12

旋转填充床反应器填料区二维几何结构及液体分布[37]"

图13

旋转填充床反应器填料区小方柱模型结构与液体流动形态[38]"

图14

分段进液式旋转填充床反应器三维气相模拟与内构件优化[40]"

图15

基于湿网和干网的多孔介质模型示意图[41,42,43]"

图16

旋转填充床反应器数值模拟发展趋势"

图17

泡沫镍填料旋转填充床反应器填料区中液体分散和流动形态[44]"

图18

泡沫镍填料旋转填充床反应器空腔区中液体分散和流动形态"

图19

通过高速摄像和CFD模拟对带有3D打印丝网填料的分段进液式旋转填充床内液体流动的研究[47]"

图20

X射线测定旋转填充床反应器持液量实验装置、R-S波纹丝网填料、泡沫镍填料持液量[45]"

图21

旋转填充床反应器的PIV研究[48]"

1 LiuY, LuoY, ChuG W, et al. 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 365-377.
2 LiuH S, LinC C, WuS C, et al. Characteristics of a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3590-3596.
3 RaoD P, BhowalA, GoswamiP S. Process intensification in rotating packed beds (HIGEE):  an appraisal[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 1150-1162.
4 YangH J, ChuG W, ZhangJ W, et al. Micromixing efficiency in a rotating packed bed: experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7730-7737.
5 LuoY, ChuG W, ZouH K, et al. Gas-liquid effective interfacial area in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16320-16325.
6 WenzelD, GórakA. Review and analysis of micromixing in rotating packed beds[J]. Chemical Engineering Journal, 2018, 345: 492-506.
7 OkoE, RamshawC, WangM. Study of absorber intercooling in solvent-based CO2 capture based on rotating packed bed technology[J]. Energy Procedia, 2017, 142: 3511-3516.
8 SunB, ShengM, GaoW, et al. Absorption of nitrogen oxides into sodium hydroxide solution in a rotating packed bed with preoxidation by ozone[J]. Energy & Fuels, 2017, 31(10): 11019-11025.
9 ZhangL, WuS, LiangZ, et al. Hydrogen sulfide removal by catalytic oxidative absorption method using rotating packed bed reactor[J]. Chinese Journal of Chemical Engineering, 2017, 25(2): 175-179.
10 ZouH, ShengM, SunX, et al. Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed[J]. Fuel, 2017, 204: 47-53.
11 ZhangL, WuS, GaoY, et al. Absorption of SO2 with calcium-based solution in a rotating packed bed[J]. Separation and Purification Technology, 2019, 214: 148-155.
12 SunB, ZhangL, WengZ, et al. Sulfonation of alkylbenzene using liquid sulfonating agent in rotating packed bed: experimental and numerical study[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 93-100.
13 PourakbarM, MoussaviG, YaghmaeianK. Enhanced biodegradation of phenol in a novel cyclic activated sludge integrated with a rotating bed bioreactor in anoxic and peroxidase-mediated conditions[J]. RSC Advances, 2018, 8(12): 6293-6305.
14 ZhangD, ZhangP Y, ZouH K, et al. Application of HIGEE process intensification technology in synthesis of petroleum sulfonate surfactant[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 508-513.
15 ZhaoY, ArowoM, WuW, et al. Polyaniline/graphene nanocomposites synthesized by in situ high gravity chemical oxidative polymerization for supercapacitor[J]. Journal of Industrial and Engineering Chemistry, 2015, 25: 280-287.
16 ZengX F, HanX W, ChenB, et al. Facile synthesis of Mg(OH)2/graphene oxide composite by high-gravity technology for removal of dyes[J]. Journal of Materials Science, 2018, 53(4): 2511-2519.
17 WangZ Y, PuY, WangD, et al. 3D foam structured nitrogen doped graphene‐Ni catalyst for highly efficient nitrobenzene reduction[J]. AIChE Journal, 2018, 64(4): 1330-1338.
18 LinC C, LinC C. Feasibility of using a rotating packed bed with blade packings to produce ZnO nanoparticles[J]. Powder Technology, 2017, 313: 60-67.
19 KangF, WangD, PuY, et al. Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor[J]. Powder Technology, 2018, 325: 405-411.
20 MoslehS, RahimiM R, GhaediM, et al. Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization[J]. Ultrasonics Sonochemistry, 2018, 40: 601-610.
21 GarciaG C, van der SchaafJ, KissAA. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156.
22 LiW, SongB, LiX, et al. Modelling of vacuum distillation in a rotating packed bed by Aspen[J]. Applied Thermal Engineering, 2017, 117: 322-329.
23 YangX, LengJ, WangD, et al. Synthesis of flower-shaped V2O5:Fe3+ microarchitectures in a high-gravity rotating packed bed with enhanced electrochemical performance for lithium ion batteries[J]. Chemical Engineering and Processing: Process Intensification, 2017, 120: 201-206.
24 BurnsJ R, RamshawC. Process intensification: visual study of liquid maldistribution in rotating packed beds[J]. Chemical Engineering Science, 1996, 51(8): 1347-1352.
25 张军. 旋转床内液体流动与传质的实验研究和计算模拟[D]. 北京: 北京化工大学, 1996.
ZhangJ. The experimental study and simulation of liquid flow in rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 1996.
26 GuoK, GuoF, FengY, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55(9): 1699-1706.
27 XuM, ZhangJ, ChenJ, et al. CFD Modeling of gas-liquid flow and masstransfer in rotating packed beds[C]//World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress on Computational Mechanics. 2004.
28 Llerena-ChavezH, LarachiF. Analysis of flow in rotating packed beds via CFD simulations—dry pressure drop and gas flow maldistribution[J]. Chemical Engineering Science, 2009, 64(9): 2113-2126.
29 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726-2732.
ZhangJ W, LiY C, ChengJ F. Characteristics of micromixing and reaction in a rotating bed[J]. CIESC Journal, 2011, 62(10): 2726-2732.
30 YangW, WangY, ChenJ, et al. Computational fluid dynamic simulation of fluid flow in a rotating packed bed[J]. Chemical Engineering Journal, 2010, 156(3): 582-587.
31 MartínezE L, JaimesR, GomezJ L, et al. CFD simulation of three-dimensional multiphase flow in a rotating packed bed[J]. Computer Aided Chemical Engineering, 2012, 30: 1158-1162.
32 ShiX, XiangY, WenL X, et al. CFD analysis of liquid phase flow in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2013, 228: 1040-1049.
33 杨旷, 初广文, 邹海魁,等. 旋转床内流体微观流动PIV研究[J]. 北京化工大学学报(自然科学版), 2011, 38(2): 7-11.
YangK, ChuG W, ZouH K, et al. Visualization of micro-fluid flow in a rotating packed bed using particle image velocimetry method[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2011, 38(2): 7-11.
34 孙润林, 向阳, 杨宇成, 等. 超重力旋转床液体流动的可视化研究[J].高校化学工程学报, 2013, 27(3): 411-416.
SunR L, XiangY, YangY C, et al. A visual study of liquid flow in a rotating packing bed with super gravity[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3): 411-416.
35 SangL, LuoY, ChuG W, et al. Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed[J]. Chemical Engineering Science, 2017, 170: 355-364.
36 SangL, LuoY, ChuG W, et al. Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: a visual study[J]. Chemical Engineering Science, 2017, 158: 429-438.
37 XieP, LuX, YangX, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229.
38 GuoT Y, ChengK P, WenL X, et al. Three-dimensional simulation on liquid flow in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8169-8179.
39 OuyangY, ZouH K, GaoX Y, et al. Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed[J]. Chemical Engineering and Processing-Process Intensification, 2018, 123: 185-194.
40 WuW, LuoY, ChuG W, et al. Gas flow in a multiliquid-inlet rotating packed bed: three-dimensional numerical simulation and internal optimization[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2031-2040.
41 XieP, LuX, DingH, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545.
42 LuX, XieP, InghamD B, et al. A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds[J]. Chemical Engineering Science, 2018, 189: 123-134.
43 XieP, LuX, YangX, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229.
44 LiuY, LuoY, ChuG W, et al. Liquid microflow inside the packing of a rotating packed bed reactor: computational, observational and experimental studies[J]. Chemical Engineering Journal, .
45 YangY, XiangY, ChuG, et al. A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed[J]. Chemical Engineering Science, 2015, 138: 244-255.
46 LiuY, WuW, LuoY, et al. CFD Simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290.
47 WuW, LuoY, ChuG W, et al. Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing[J]. Chemical Engineering Journal, .
48 GaoX Y, ChuG W, OuyangY, et al. Gas flow characteristics in a rotating packed bed by particle image velocimetry measurement[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14350-14361.
49 YangY, XiangY, ChuG, et al. CFD modeling of gas-liquid mass transfer process in a rotating packed bed[J]. Chemical Engineering Journal, 2016, 294: 111-121.
50 GuoT Y, ShiX, ChuG W, et al. Computational fluid dynamics analysis of the micromixing efficiency in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4856-4866.
[1] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[2] 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411.
[3] 刘斌, 尤占平, 邓佳佳. 一维二氧化碳管道全孔破裂模型[J]. 化工学报, 2019, 70(6): 2174-2181.
[4] 佟颖, Ahmad Nouman, 鲁波娜, 王维. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
[5] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712.
[6] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[7] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
[8] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[9] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[10] 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型的影响分析[J]. 化工学报, 2019, 70(2): 450-459.
[11] 戴波, 周泽彧, 张岩, 林双双, 刘学君. 危化品仓储堆垛安全距离监测系统设计[J]. 化工学报, 2019, 70(2): 707-715.
[12] 胡晨辉, 王亦飞, 包泽彬, 于广锁. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48.
[13] 谢艳琦, 诸凯, 王雅博. 冷冻条件对植物细胞低温保存的影响[J]. 化工学报, 2018, 69(S2): 200-204.
[14] 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88.
[15] 冯乐乐, 王景玉, 吴玉新, 张海, 张缦, 吕俊复, 岳光溪. 颗粒特性对撞击分离器性能影响的实验与数值研究[J]. 化工学报, 2018, 69(8): 3348-3355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙海翔, 张林, 柴红, 陈欢林. 壳聚糖亲和膜脱除蛋白质溶液中的内毒素[J]. CIESC Journal, 2005, 13(4): 457 -463 .
[2] 徐辉, 张国亮, 张凤宝, 王淑兰. 用于清除胆红素的磁性亲和分离方法[J]. CIESC Journal, 2003, 11(4): 456 -459 .
[3] 罗明检, 胡冰, 姜涛, 夏淑倩, 马沛生. Analysis and Comparison of the Alpha Functions of SRK Equation of State[J]. CIESC Journal, 2008, 16(5): 766 -771 .
[4] 晋卫, 郭伟, 吕效平, 韩萍芳, 王延儒. Effect of the Ultrasound Generated by Flat Plate Transducer Cleaning on Polluted Polyvinylidenefluoride Hollow Fiber Ultrafiltration Membrane[J]. CIESC Journal, 2008, 16(5): 801 -804 .
[5] 李小军, 尹明辉, 张国亮, 张凤宝. Synthesis and Characterization of Novel Temperature and pH Responsive Hydroxylpropyl Cellulose-based Graft Copolymers[J]. CIESC Journal, 2009, 17(1): 145 -149 .
[6] 何亮, 张淑芬, 唐炳涛, 王丽丽, 杨锦宗. Dyeability of Polylactide Fabric with Hydrophobic Anthraquinone Dyes[J]. CIESC Journal, 2009, 17(1): 156 -159 .
[7] 许映杰, 姚加, 姚萍, 李浩然, 韩世钧. Prediction of Vapor-Liquid Equilibria of Alcohol-Hydrocarbon Systems by 1H NMR and Azeotropic Point[J]. CIESC Journal, 2010, 18(3): 455 -461 .
[8] 陈良, Yinlun Huang. Integrated Product and Process Control for Sustainable Semiconductor Manufacturing[J]. CIESC Journal, 2011, 19(2): 192 -198 .
[9] 辛寅昌, 邱增中, 张盛军, 郑平, 赵明方. α-烯基聚醚磺酸盐的耐盐性能及应用 [J]. 化工学报, 2008, 59(11): 2935 -2940 .
[10] 戴文战;吴夏来.

一种快速抑制超调量的改进预测控制算法

[J]. CIESC Journal, 2010, 61(8): 2101 -2105 .