化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 191-200.doi: 10.11949/0438-1157.20190609

• 流体力学与传递现象 • 上一篇    下一篇

填充多级相变材料的套管式储热器性能研究

王宁1(),张晨宇1,徐洪涛1(),张剑飞2   

  1. 1. 上海理工大学能源与动力工程学院,上海市动力工程多相流动与传热重点实验室,上海 200093
    2. 西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-06-02 修回日期:2019-06-19 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 徐洪涛 E-mail:tioddog@foxmail.com;htxu@usst.edu.cn
  • 作者简介:王宁(1995—),男,硕士研究生,tioddog@foxmail.com
  • 基金资助:
    国家重点研发计划项目(2018YFF0216000)

Performance investigation of sleeve tube heat exchanger filled with multi-layer phase change materials

Ning WANG1(),Chenyu ZHANG1,Hongtao XU1(),Jianfei ZHANG2   

  1. 1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
    2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-06-02 Revised:2019-06-19 Online:2019-09-05 Published:2019-11-07
  • Contact: Hongtao XU E-mail:tioddog@foxmail.com;htxu@usst.edu.cn

摘要:

提出一种填充三级相变材料的水平套管式储热器,并建立该储热器的综合性能评价指标,基于该指标数值预测和研究了分隔壁面、翅片布置和方向等参数对系统综合性能的影响。结果表明:分隔壁面对PCM的自然对流有明显的抑制作用,且相变温度越高,抑制效果越显著;相对于无翅片结构,在各级PCM中布置翅片的储热器的综合储热效率提高了约2.27倍;不同翅片布置方向下PCM液相率的变化可分为两个不同阶段,且均匀布置的翅片结构(Case2)具有较优的综合性能;各级PCM间熔化速率的不均匀性是制约系统整体储热性能的关键因素;Case5的翅片布置方式使各级PCM间熔化速率的均匀性明显改善,与Case2相比,其综合储热效率提高了28.30%。

关键词: 太阳能, 传热, 相变材料, 翅片优化, 数值模拟

Abstract:

A horizontal sleeve tube heat exchanger filled with three-layer phase change materials is proposed, and a comprehensive storage density evaluation criterion of the heat storage device is established. Based on the criterion, the effects of separated walls, fin arrangements and direction are numerically predicted and investigated. The results show that the natural convection of PCM (phase change material) is significantly suppressed by separated walls, and the higher the phase change temperature, the more significant the suppression effect. Compared with the sleeve tube heat exchanger without fins, the comprehensive thermal storage efficiency for the exchanger with fins in each layer PCM is improved by 2.27 times. The variations of PCM liquid fraction can be divided into two different stages under various fin arrangement directions, and the evenly arranged fin structure (Case2) has superior thermal storage performance. The non-uniformity of the PCM melting rate in each layer is a key factor that restricts the overall system performance of the thermal storage characteristics. Compared with Case2, the uniformity of the melting rate between different-layer PCMs can be significantly improved by Case5, and the comprehensive thermal storage efficiency is improved by 28.30%.

Key words: solar energy, heat transfer, phase change material, fins optimization, numerical simulation

中图分类号: 

  • TK 512

图1

填充三级相变材料的水平套管式储热器"

图2

二维模型"

表1

几何参数"

Ri/mmR1/mmR2/mmR3/mmRo/mm管壁及翅片厚度/mm
20601001401601

图3

翅片布置方式"

表2

热物性参数"

材料熔化温度/℃密度/(kg·m-3)比热容/(J·kg-1·K-1)热导率/(W·m-1·K-1)相变潜热/(J·kg-1)动力黏度/(Pa·s)
RT42[26]4276020000.21650000.0235
RT50[27]5076020000.21600000.0275
RT60[28]6077020000.21600000.02853
8978381387.6

图4

计算区域和边界条件"

图5

网格独立性验证"

图6

时间步长独立性验证"

图7

模型验证"

图8

分隔壁面对PCM液相率的影响"

图9

有无分隔壁面下PCM(RT60)的温度和液相率云图"

图10

有无翅片结构下PCM的温度和液相率云图"

图11

翅片对系统整体液相率的影响"

图12

翅片对各级PCM液相率的影响"

图13

不同翅片角度对液相率的影响"

图14

不同翅片角度下各级PCM的熔化时间"

图15

Case2和Case5各级PCM的液相率变化"

1 AbdulateefA M, MatS, AbdulateefJ, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1620-1635.
2 AlvaG, LinY, FangG. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378.
3 IbrahimN I, Al-SulaimanF A, RahmanS, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50.
4 GasiaJ, MiróL, CabezaL F. Materials and system requirements of high temperature thermal energy storage systems: a review (2): Thermal conductivity enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1584-1601.
5 CastellA, SoléC. An overview on design methodologies for liquid–solid PCM storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 289-307.
6 MahdiJ M, LohrasbiS, NsoforE C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. International Journal of Heat and Mass Transfer, 2019, 137: 630-649.
7 DengS, NieC, JiangH, et al. Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2019, 130: 532-544.
8 KamkariB, GroulxD. Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles[J]. Experimental Thermal and Fluid Science, 2018, 97: 94-108.
9 JiC, QinZ, DubeyS, et al. Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection[J]. International Journal of Heat and Mass Transfer, 2018, 127: 255-265.
10 ZhengH, WangC, LiuQ, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381.
11 XuY, LiM J, ZhengZ J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880.
12 MahdiJ M, NsoforE C. Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system[J]. Journal of Energy Storage, 2018, 20: 529-541.
13 GorzinM, HosseiniM J, RahimiM, et al. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger[J]. Journal of Energy Storage, 2019, 22: 88-97.
14 MahdiJ M, NsoforE C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986.
15 Al-JethelahM, TasnimS H, MahmudS, et al. Nano-PCM filled energy storage system for solar-thermal applications[J]. Renewable Energy, 2018, 126: 137-155.
16 DasN, TakataY, KohnoM, et al. Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit[J]. International Journal of Heat and Mass Transfer, 2017, 113: 423-431.
17 DengS, NieC, WeiG, et al. Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube[J]. Energy and Buildings, 2019, 183: 161-173.
18 Al-AbidiA A, MatS, SopianK, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156.
19 WangP, YaoH, LanZ, et al. Numerical investigation of PCM melting process in sleeve tube with internal fins[J]. Energy Conversion and Management, 2016, 110: 428-435.
20 EslamnezhadH, RahimiA B. Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins[J]. Applied Thermal Engineering, 2017, 113: 813-821.
21 AsgharianH, BaniasadiE. A review on modeling and simulation of solar energy storage systems based on phase change materials[J]. Journal of Energy Storage, 2019, 21: 186-201.
22 HamzaH, HanchiN, AbouelkhayratB, et al. Location and thickness effect of two phase change materials between layers of roof on energy consumption for air-conditioned room[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021009.
23 MosaffaA H, Infante FerreiraC A, TalatiF, et al. Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7.
24 SefidanA M, SojoudiA, SahaS C, et al. Multi-layer PCM solidification in a finned triplex tube considering natural convection[J]. Applied Thermal Engineering, 2017, 123: 901-916.
25 ZhengZ J, XuY, LiM J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance[J]. Applied Energy, 2018, 220: 447-454.
26 JiC, QinZ, LowZ, et al. Non-uniform heat transfer suppression to enhance PCM melting by angled fins[J]. Applied Thermal Engineering, 2018, 129: 269-279.
27 ElbahjaouiR, El QarniaH, NaimiA. Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems[J]. Energy and Buildings, 2018, 168: 438-456.
28 PrietoM M, SuárezI, GonzálezB. Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems[J]. Applied Thermal Engineering, 2017, 116: 11-23.
29 程友良, 韩健, 张金生. 相变蓄热单元蓄/放热过程的数值模拟研究[J]. 太阳能学报, 2018, (5): 1237-1244.
ChengY L, HanJ, ZhangJ S. Numerical simulation on charge/discharge process of latent heat storage unit[J]. Acta Energiae Solaris Sinica, 2018, (5): 1237-1244.
30 陶文铨. 数值传热学 [M]. 2版. 西安: 西安交通大学出版社, 2001.
TaoW Q. Numerical Heat Transfer [M]. 2nd ed.Xi’an: Xi’an Jiaotong University Press, 2001.
[1] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[2] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[3] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[4] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[5] 贾文华,田茂诚,张冠敏,魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[6] 尹应德,朱冬生,刘世杰,叶周,王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[7] 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[8] 蒋二辉,张东伟,周俊杰,沈超,魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[9] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
[10] 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[11] 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
[12] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[13] 侯德鑫, 陈玥, 叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[14] 谈周妥, 郭志罡, 杨剑, 王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100.
[15] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王良华, 崔觉剑, 姚克俭. Numerical Simulation and Analysis of Gas Flow Field in Serrated Valve Column[J]. CIESC Journal, 2008, 16(4): 541 -546 .
[2] Gul-e-Rana JAFFRI, 张济宇. Investigation on Steam Gasification of High-metamorphous Anthracite Using Mixed Black Liquor and Calcium Catalyst[J]. CIESC Journal, 2008, 16(4): 575 -583 .
[3] 傅永峰, 苏宏业, 张英, 褚健. Adaptive Soft-sensor Modeling Algorithm Based on FCMISVM and Its Application in PX Adsorption Separation Process[J]. CIESC Journal, 2008, 16(5): 746 -751 .
[4] 张敏革, 张吕鸿, 姜斌, 尹玉国, 李鑫钢. Calculation of Metzner Constant for Double Helical Ribbon Impeller by Computational Fluid Dynamic Method[J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 686 -692 .
[5] 于文利, 夏菲, 金鹤阳, 林长春, 赵亚平, 蒋思源, 何琳. Production of Submicroparticles of β-Sitosterol Using an Aerosol Solvent Extraction System[J]. CIESC Journal, 2008, 16(6): 956 -960 .
[6] 迟化昌, 姬忠礼, 孙冬梅, 崔立山. Experimental Investigation of Dust Deposit within Ceramic Filter Medium during Filtration-Cleaning Cycles[J]. CIESC Journal, 2009, 17(2): 219 -225 .
[7] 胡春平, 颜学峰. An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation[J]. CIESC Journal, 2009, 17(2): 232 -240 .
[8] 康英伟, 李俊, 曹广益, 屠恒勇, 李箭, 杨杰. One-dimensional Dynamic Modeling and Simulation of a Planar Direct Internal Reforming Solid Oxide Fuel Cell[J]. CIESC Journal, 2009, 17(2): 304 -317 .
[9] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. CIESC Journal, 2010, 18(5): 837 -842 .
[10] 罗宁, 卢英妹, 江燕斌. Solubility of Paclitaxel in Mixtures of Dichloromethane and Supercritical Carbon Dioxide [J]. CIESC Journal, 2011, 19(4): 558 -564 .