化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 155-160.doi: 10.11949/0438-1157.20190587

• 流体力学与传递现象 • 上一篇    下一篇

十八烷酸热传导机制的尺度效应研究

邹瀚影(),冯妍卉(),邱琳,张欣欣   

  1. 北京科技大学能源与环境工程学院,北京 100083
  • 收稿日期:2019-05-29 修回日期:2019-06-12 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 冯妍卉 E-mail:hanying_zou@163.com;yhfeng@me.ustb.edu.cn
  • 作者简介:邹瀚影(1993—),女,博士研究生,hanying_zou@163.com
  • 基金资助:
    国家自然科学基金项目(51876007)

Size effect of heat conduction mechanism on stearic acid

Hanying ZOU(),Yanhui FENG(),Lin QIU,Xinxin ZHANG   

  1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2019-05-29 Revised:2019-06-12 Online:2019-09-05 Published:2019-11-07
  • Contact: Yanhui FENG E-mail:hanying_zou@163.com;yhfeng@me.ustb.edu.cn

摘要:

十八烷酸的热导率具有显著的尺寸依赖性,然而只有宏观热输运性质得到充分研究,限制了微尺度特征结构的复合材料热性能的进一步提高。因此,为满足新型复合相变材料的研究需求,十八烷酸的纳米尺度热输运特性亟待解决。基于分子动力学模拟,系统性地研究了块体、纳米线和纳米链三种形态的十八烷酸热导率的演变规律,通过平衡法模拟的热导率分别为0.4546、0.2213和0.0085 W·m-1·K-1;结合声子态密度和重叠能分析,发现在较低频率声子振动的衰减导致纳米线热导率低于块体,显著降低的声子重叠能严重阻碍纳米链的声子输运导致极低热导率。

关键词: 热传导, 微尺度, 分子模拟, 尺度效应, 十八烷酸

Abstract:

The thermophysical properties of steaic acid (SA) has a significant size dependence. However, only the macroscopic heat transport properties have been fully studied, which limits the further improvement of the thermal properties of composites phase change materials (PCMs) with microscale structure features, such as nanocapsule, aerogel materials and porous material. Therefore, in order to meet the research needs of materials design of the high-performance composite PCMs, the nanoscale heat transport properties of SA need to be discovered urgently. In this work, based on molecular dynamics simulation, the difference of thermal conductivity and the thermal transport mechanisms of SA in three forms of bulk, nanowire and nanochain were systematically studied. The thermal conductivity of three forms simulated by equilibrium method dynamics was 0.4546, 0.2213 and 0.0085 W·m-1·K-1, respectively. And the vibration density of states and overlap energy were used for the further exploration of the heat transport mechanism. The results show that the thermal conductivity of bulk is the largest, followed by the nanowire, and the nanochain has the lowest thermal conductivity. Due to the size effect, which results in the more boundary scattering events, the attenuation of phonon vibration at lower frequencies causes the nanowire thermal conductivity to be lower than that of the bulk. Besides the boundary scattering, the curled SA molecules in the nanochain cause the serious decrease of phono overlap energy between bonding atoms on the end of molecules. The high mismatch level of atoms increases the phonon scattering events happen in the molecule and hinders the heat transport between two molecules, and results in the lowest thermal conductivity in the SA nanochain.

Key words: heat conduction, microscale, molecular simulation, size effect, stearic acid

中图分类号: 

  • TK 124

图1

十八烷酸晶体结构的XRD的实验值与模拟值"

图2

十八烷酸晶体结构计算单元"

图3

十八烷酸平衡法热导率计算中的自相关热流"

图4

十八烷酸块体、纳米线和纳米链的热导率"

图5

块体、纳米线和纳米链的形态的十八烷酸分子端部原子VDOS"

图6

纳米线和纳米链的形态的十八烷酸分子端部原子的OE"

1 Gracia A , Cabeza L F . Phase change materials and thermal energy storage for buildings[J]. Energy and Buildings, 2015, 103: 414-419.
2 Sharma R K , Ganesan P , Tyagi V V , et al . Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion and Management, 2015, 95: 193-228.
3 Lin Y X , Jia Y T , Alva G , et al . Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742.
4 Soares N , Costa J J , Gaspar A R , et al . Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency[J]. Energy and Buildings, 2013, 59: 82-103
5 Zhang Y , Zhou M , Huang F , et al . Effect of graphene aerogel on thermal behavior of phase change materials for thermal management [J]. Solar Energy Materials and Solar Cells, 2013, 113: 195-200.
6 Karaipekli A , Sarı A , Kaygusuz K . Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32: 2201-2210.
7 Mehrali M , Latibari S T , Mehrali M , et al . Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material [J]. Applied Thermal Engineering, 2013, 61(2): 633-640.
8 Tang F , Su D , Tang Y J , et al . Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2015, 141: 218-224.
9 Bao Y H , Pan W , Wang T W , et al . Microencapsulation of fatty acid as phase change material for latent heat storage[J]. Journal of Energy Engineering, 2011, 137: 214-219.
10 Zhang T , Wang Y , Shi H , et al . Fabrication and performances of new kind microencapsulated phase change material based on stearic acid core and polycarbonate shell[J]. Energy Conversion and Management, 2012, 64: 1-7.
11 Pan L , Tao Q , Zhang S , et al . Preparation, characterization and thermal properties of micro-encapsulated phase change materials[J]. Solar Energy Materials and Solar Cells, 2012, 98: 66-70.
12 Sarı A , Biçer A . Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs[J]. Energy and Buildings, 2012, 51: 73-83.
13 Sarı A , Karaipekli A , Alkan C . Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material[J]. Chemical Engineering Journal, 2009, 55: 899-904.
14 Wang Y , Zheng H , Feng H X , et al . Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials[J]. Energy and Buildings, 2012, 47: 467-473.
15 Zhou M , Lin T , Huang F , et al . Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage[J]. Advanced Functional Materials, 2013, 23(18): 2263-2269.
16 Wang Z J , Alaniz J E , Jang W Y , et al . Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths[J]. Nano Letters, 2011, 11(6): 2206-2213.
17 Larsson K , Sydow E . The crystal structure of the B-form of fatty acids[J]. Acta Chemica Scandinavica, 1996, 20(5): 1203-1207.
18 Fu X , Liu Z , Wu B , et al . Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1173-1181.
19 Ladd J C , Moran B , Hoover W G . Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics[J]. Physical Review B, 1986, 34(8): 5058-5064.
20 Hu M , Giapis K P , Goicochea J V , et al . Significant reduction of thermal conductivity in Si/Ge core-shell nanowires[J]. Nano Letters, 2011, 11: 618-623.
21 Hu M , Zhang X L , Poulikakos D , et al . Large “near junction” thermal resistance reduction in electronics by interface nanoengineering[J]. International Journal of Heat and Mass Transfer, 2011, 54: 5183-5191.
22 Hu M , Zhang X L , Poulikakos D . Anomalous thermal response of silicene to uniaxial stretching[J]. Physical Review B, 2013, 87: 195417.
23 Qiu L , Zou H Y , Feng Y H , et al . Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity[J]. Carbon, 2019, 141: 497-505.
24 Zhang X L , Jiang J W . Thermal conductivity of zeolitic imidazolate framework-8: a molecular simulation study[J]. Journal of Physical Chemistry C, 2013, 117: 18441-18447.
25 Qiu L , Zou H Y , Zhu N , et al . Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers[J]. Applied Thermal Engineering, 2018, 141: 913-920.
26 Plimption S . Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19
27 Klauda J B , Venable R M , Freites J A , et al . Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types[J]. Journal of Physical Chemistry B, 2010, 114: 7830-7843.
28 Klauda J B , Monje V , Kim T , et al . Improving the CHARMM force field for polyunsaturated fatty acid chains[J]. The Journal of Physical Chemistry B, 2012, 116(31): 9424-9431.
29 Nosé S . A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81: 511-519.
30 Hoover W . Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.
31 Singh V , Bougher T L , Weathers A , et al . High thermal conductivity of chain-oriented amorphous polythiophene[J]. Nature Nanotechnology, 2014, 9: 384-390.
[1] 王韬, 刘向阳, 何茂刚. 离子液体[bmim][Tf2N]的分子动力学模拟[J]. 化工学报, 2019, 70(S2): 258-264.
[2] 张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
[3] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[4] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[5] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[6] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[7] 王浩男, 玄伟伟, 夏德宏. 不同温度下煤灰熔渣的结构演变规律[J]. 化工学报, 2019, 70(8): 3094-3103.
[8] 徐国稳, 李坤, 蒋祎璠, 黄明骏, 房东旭, 蔡姗姗. 三类随机分形结构下干土壤有效热导率的介观研究[J]. 化工学报, 2019, 70(7): 2496-2502.
[9] 孟凯, 许建良, 代正华, 刘海峰, 王辅臣, 龚剑洪. 水分子对初始碳烟颗粒形成过程影响的分子动力学模拟[J]. 化工学报, 2019, 70(6): 2237-2243.
[10] 陈巨辉, 韩坤, 王帅, 李铭坤, 陈纪元, 马明. 基于反扰动非平衡分子动力学的纳米流体导热增强机理研究[J]. 化工学报, 2019, 70(6): 2147-2152.
[11] 任帅, 李星, 张京, 汪小憨, 赵黛青. 乙醇和二甲醚微射流火焰燃烧特性研究[J]. 化工学报, 2019, 70(5): 1973-1980.
[12] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[13] 周雪冰, 刘婵娟, 罗金琼, 梁德青. 甲烷水合物分解过程的微尺度测量[J]. 化工学报, 2019, 70(3): 1042-1047.
[14] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[15] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!