化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1018-1025.doi: 10.11949/0438-1157.20190586

• 流体力学与传递现象 • 上一篇    下一篇

闭式喷雾冷却的瞬态传热过程研究

周年勇(),徐慕豪,冯浩,段锋,王庆荣,陈海飞,郭强   

  1. 常州大学石油工程学院,江苏 常州 213000
  • 收稿日期:2019-05-29 修回日期:2019-10-13 出版日期:2020-03-05 发布日期:2019-11-02
  • 通讯作者: 周年勇 E-mail:zhounianyong@cczu.edu.cn
  • 作者简介:周年勇(1986—),男,博士,讲师, zhounianyong@cczu.edu.cn
  • 基金资助:
    江苏省自然科学基金项目(BK20180960)

Study on transient heat transfer process of spray cooling with closed-loop

Nianyong ZHOU(),Muhao XU,Hao FENG,Feng DUAN,Qingrong WANG,Haifei CHEN,Qiang GUO   

  1. School of Petroleum Engineering, Changzhou University, Changzhou 213000, Jiangsu, China
  • Received:2019-05-29 Revised:2019-10-13 Online:2020-03-05 Published:2019-11-02
  • Contact: Nianyong ZHOU E-mail:zhounianyong@cczu.edu.cn

摘要:

搭建了闭式喷雾冷却实验台,实验研究了喷雾冷却的瞬态传热过程,获得了准确描述其传热过程的实验曲线,分析了冷却初始温度、加热功率及工质类型对瞬态传热过程的影响。研究表明:对于喷雾冷却的瞬态传热过程,其表面温度变化趋势可分为急速下降、持续升高、二段下降3类。初始表面温度在经历启动初期增强效应后,若小于莱登弗罗斯特点(LFP)对应的温度Tf,则表面温度不断下降,在核态沸腾区实现热平衡;反之,表面温度升高,在膜态沸腾区实现热平衡;恒定加热功率的大小决定了表面温度变化速率,随着恒定加热功率的增大,表面温度下降或者上升的速率加快;同等条件下,对于不同类型介质,喷嘴入口压力及饱和温度越高,其Tf也越高。

关键词: 喷雾冷却, 传热, 瞬态过程, 表面, 莱登弗罗斯特点

Abstract:

A closed spray cooling test bench is built. The transient heat transfer process of spray cooling was experimentally studied, and the experimental curve describing the heat transfer process accurately was obtained. The influence of initial cooling temperature, heating power and medium type on transient heat transfer process is analyzed. The results are as follows: the trend of surface temperature can be divided into rapid decline, continuous increase and second decline. After experiencing the initial enhancement effect, if the initial surface temperature is less than the temperature Tfat Leiden frost point , the surface temperature decreases continuously and the thermal equilibrium is achieved in the nucleate boiling region; On the contrary, the surface temperature increases and the thermal equilibrium is achieved in the film boiling zone. The value of constant heating power determines the rate of surface temperature change. With the increase of constant heating power, the rate of surface temperature decreasing or rising accelerates. In addition, for different types of media, the higher nozzle inlet pressure and saturation temperature mean the higher temperature Tf at Leiden frost point.

Key words: spray cooling, heat transfer, transient process, surface, Leiden frost point

中图分类号: 

  • TK 124

图1

闭式循环喷雾冷却实验系统原理图"

图2

模拟热源结构"

图3

实验热源温度分布云图及线性拟合"

图4

本文数据处理公式与导热反问题法求解结果对比"

表1

测量仪器及其精度"

测量数据测量仪器量程精度
喷雾腔温度PT100铂电阻-50~150℃±0.15°C
加热块柱体温度K型针式热电偶0~800℃±0.004|t|
喷嘴进口压力压力传感器0~1.6 MPa±0.25%FS
喷雾流量液体涡轮流量计0~10 L/min±1%

图5

不同初始温度下热通量变化曲线"

图6

不同初始温度下表面温度变化曲线"

图7

不同初始表面温度下瞬态喷雾冷却的沸腾曲线"

图8

不同加热功率下表面温度变化曲线"

图9

不同加热功率下瞬态喷雾冷却的沸腾曲线"

图10

不同类型工质下表面温度变化曲线"

图11

不同类型工质下瞬态喷雾冷却的沸腾曲线"

图12

喷雾冷却沸腾曲线"

1 Cheng W L, Zhang W W, Chen H, et al. Spray cooling and flash evaporation cooling: the current development and application [J]. Renewable & Sustainable Energy Reviews, 2016, 55: 614-628.
2 Cheng W L, Liu Q N, Zhao R, et al. Experimental investigation of parameters effect on heat transfer of spray cooling [J]. Heat and Mass Transfer, 2010, 46(8): 911-921.
3 Liang G, Mudawar I. Review of spray cooling (1): Single-phase and nucleate boiling regimes, and critical heat flux [J]. International Journal of Heat and Mass Transfer, 2017, 115: 1174-1205.
4 Cabrera E. Heat flux correlation for spray cooling in the nucleate boiling regime [J]. Experimental Heat Transfer, 2003, 16(1): 19-44.
5 Rybicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays [J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 5-16.
6 王锐, 陈斌, 王嘉丰, 等. R1234yf瞬态喷雾冷却及过热度影响的实验研究[J]. 化工学报, 2018, 69(2): 595-601.
Wang R, Chen B, Wang J F, et al. Experimental research of R1234yf transient spray cooling and influence of cryogen superheat degree [J]. CIESC Journal, 2018, 69 (2): 595-601.
7 曹磊, 陈剑楠, 姜培学, 等. 基于制冷循环的闭式喷雾冷却系统实验研究[J]. 工程热物理学报, 2018, 39(2): 373-378.
Cao L, Chen J N, Jiang P X, et al. Experimental investigation of spray cooling system in a closed loop based on refrigeration cycle [J]. Journal of Engineering Thermophysics, 2018, 39 (2): 373-378.
8 王锐, 杨涛, 周致富, 等. 喷嘴类型对制冷剂喷雾雾化特性及表面传热的影响研究[J]. 工程热物理学报, 2017, 38(12): 2646-2650.
Wang R, Yang T, Zhou Z F, et al. Effects of nozzle type on spray characteristics and surface heat transfer in cryogen spray cooling [J]. Journal of Engineering Thermophysics, 2017, 38 (12): 2646-2650.
9 侯燕. 多喷嘴喷雾冷却实验研究与数值模拟[D]. 北京: 中国科学院大学, 2014.
Hou Y. Experimental study and numerical simulation of multi nozzle spray cooling [D]. Beijing: University of Chinese Academy of Sciences, 2014.
10 Fukuda H, Nakata N, Kijima H, et al. Effects of surface conditions on spray cooling characteristics[J]. ISIJ International, 2016, 56(4): 628-636.
11 Wei Z, Wang Z, Xu M. Heat transfer characteristics in closed-loop spray cooling of micro-structured surfaces[J]. High Power Laser & Particle Beams, 2012, 24(9): 2053-2058.
12 Zhou N, Chen F, Cao Y, et al. Experimental investigation on the performance of a water spray cooling system [J]. Applied Thermal Engineering, 2017, 112: 1117-1128.
13 Visaria M, Mudawar I. Application of two-phase spray cooling for thermal management of electronic devices [J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(4): 784-793.
14 Cui Q, Chandra S, McCahan S. The effect of dissolving salts in water sprays used for quenching a hot surface(2): Spray cooling [J]. Journal of Heat Transfer, 2003, 125(2): 333-338.
15 Wang Y, Zhou N, Yang Z, et al. Experimental investigation of aircraft spray cooling system with different heating surfaces and different additives [J]. Applied Thermal Engineering, 2016, 103: 510-521.
16 刘红, 何阳, 蔡畅, 等. 乙醇和正丁醇添加剂对喷雾冷却的影响[J]. 化工学报, 2019, 70(1): 65-71.
Liu H, He Y, Cai C, et al. Influence of ethanol and n-butanol additives on spray cooling [J]. CIESC Journal, 2019, 70 (1): 65-71.
17 余宁, 潘健生, 顾剑锋, 等. 瞬态非傅里叶导热效应判据的探讨[J]. 激光技术, 2002, 26(2): 156-158.
Yu N, Pan J S, Gu J F, et al. Discussions on the criterion of transient non-Fourier thermal conductivity effect [J]. Laser Technology, 2002, 26(2): 156-158.
18 周致富, 徐腾宇, 赵曦, 等. 喷雾冷却表面瞬态热通量计算方法研究[J]. 工程热物理学报, 2016, 37(11): 2452-2457.
Zhou Z F, Xu T Y, Zhao X, et al. Methodology for prediction of time-varying heat flux during pulsed spray cooling [J]. Journal of Engineering Thermophysics, 2016, 37(11): 2452-2457.
19 Li D, Chen B, Wu W J, et al. Multi-scale modeling of tissue freezing during cryogen spray cooling with R134a, R407c and R404a[J]. Applied Thermal Engineering, 2014, 73(2): 1489-1500.
20 田加猛, 陈斌, 李东, 等. 制冷剂瞬态喷雾冷却表面传热特性[J]. 化工学报, 2016, 67(10): 4064-4071.
Tian J M, Chen B, Li D, et al. Surface heat transfer characteristics during transient cryogen spray cooling [J]. CIESC Journal, 2016, 67 (10): 4064-4071.
21 Peng C, Xu X, Liang X. Experimental study on temperature variation patterns and deterioration of spray cooling with R21[J]. International Journal of Heat & Mass Transfer, 2018, 121: 1159-1167.
22 Hsieh S S, Fan T C, Tsai H H. Spray cooling characteristics of water and R-134a(Ⅱ): transient cooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(26): 5713-5724.
23 Baysinger K M, Yerkes K L, Michalak T E, et al. Design of a microgravity spray cooling experiment [C]//Proceedings of the 42nd AIAA Aerospace Science Meeting and Exhibit. Reno, NV, USA, 2004.
24 Cader T, Westra L J, Eden R C. Spray cooling thermal management for increased device reliability [J]. IEEE Transactions on Device and Materials Reliability, 2005, 4(4): 605-613.
25 Zhou Z, Lin Y, Tang H, et al. Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling[J]. International Journal of Heat and Mass Transfer, 2019, 139: 1047-1055.
26 Lin Y, Zhou Z, Fang Y, et al. Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling[J]. Applied Thermal Engineering, 2019, 159: 1359-4311.
27 Wang J, Li Y, Li J, et al. Enhanced heat transfer by an original ‘immersed spray cooling system’ integrated with an ejector[J]. Energy, 2018, 158: 512-523.
28 赵宇新, 赵霄, 张博, 等. 瞬态喷雾冷却中使用导热逆问题求解热边界条件[J]. 大连理工大学学报, 2019, 59(4): 359-365.
Zhao Y X, Zhao X, Zhang B, et al. Solution of thermal boundary conditions using inverse heat conduction problem in intermittent spray cooling [J]. Journal of Dalian University of Technology, 2019, 59 (4): 359-365.
29 文哲希, 吕硕, 何雅玲. 预测喷雾冷却热通量反问题的粒子群算法研究[J]. 工程热物理学报, 2013, 34(8): 1506-1510.
Wen Z X, Lyu S, He Y L. Investigation of particle swarm optimization algorithm in inverse problems of estimating spray cooling heat flux [J]. Journal of Engineering Thermophysics, 2013, 34(8): 1506-1510.
30 刘俊峰, 陈斌, 王国祥, 等. 水射流冷却过程中表面热通量的预测[J]. 工程热物理学报, 2010, 31(1): 110-112.
Liu J F, Chen B, Wang G X, et al. Prediction of surface heat flux in a water jet cooling process [J]. Journal of Engineering Thermophysics, 2010, 31 (1): 110-112.
[1] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[2] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[3] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[4] 龚志明, 王瑞祥, 邢美波. 全氟烷基表面活性剂吸附特性研究[J]. 化工学报, 2020, 71(4): 1754-1761.
[5] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[6] 李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
[7] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[8] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[9] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[10] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[11] 方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723.
[12] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[13] 任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
[14] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[15] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵平,王世昌. 连续逆向色谱电泳过程 [J]. CIESC Journal, 1999, 50(2): 191 -199 .
[2] 李伟,欧阳藩. 制备型离子交换填料综合评估指标体系的构建 [J]. CIESC Journal, 2000, 51(S1): 130 -133 .
[3] 王风贺, 夏明珠, 雷武, 魏运洋, 王风云. Span 80-Tween 80/液体石蜡/AM-H2O反相微乳液体系 [J]. 化工学报, 2005, 56(2): 368 -371 .
[4] 吕雪松,李洪钟. 横向旋转磁场作用下粘性颗粒流态化质量的改善 [J]. CIESC Journal, 2000, 51(S1): 223 -226 .
[5] 张建安,刘德华,张小勇,李佐虎. 木素电解加氢伏安曲线及动力学模型的研究 [J]. CIESC Journal, 2000, 51(S1): 227 -230 .
[6] 张克忠,孙鲁. 钒触媒剂的制造法及性能(摘要) [J]. CIESC Journal, 1951, 2(2): 10 .
[7] 奚祖威,杜文,宋树忠,袁启年. 反应条件对石蜡深度氧化制取二元酸的影响 [J]. CIESC Journal, 1965, 16(3): 159 -168 .
[8] 薛美贵,王双飞,黄崇杏. 印刷纸质食品包装材料中Pb、Cd、Cr及[J]. CIESC Journal, 2010, 61(12): 3258 -3265 .
[9] 胡英,王琨,吕瑞东. 醋酸-水二元系25——75℃恒温汽液平衡的研究 [J]. CIESC Journal, 1980, 31(4): 341 -352 .
[10] 朱以勤,杜有根,谭天恩. 旋流板除尘器 [J]. CIESC Journal, 1982, 33(2): 179 -185 .