化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1744-1753.doi: 10.11949/0438-1157.20190584

• 表面与界面工程 • 上一篇    下一篇

密封环支撑边界条件对机械密封端面变形的影响

王金红(),陈志(),刘凡,李建明   

  1. 四川大学化学工程学院,四川 成都 610065
  • 收稿日期:2019-06-04 修回日期:2019-11-13 出版日期:2020-04-05 发布日期:2019-11-28
  • 通讯作者: 陈志 E-mail:786821058@qq.com;chenzhi19@sina.com
  • 作者简介:王金红(1994—),女,硕士研究生,786821058@qq.com

Influence of support boundary conditions of a seal ring on deformation of mechanical seal end face

Jinhong WANG(),Zhi CHEN(),Fan LIU,Jianming LI   

  1. College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2019-06-04 Revised:2019-11-13 Online:2020-04-05 Published:2019-11-28
  • Contact: Zhi CHEN E-mail:786821058@qq.com;chenzhi19@sina.com

摘要:

机械密封的密封环是通过辅助O形圈支撑在轴上或者密封腔内,不同的结构设计会改变密封环支撑边界。针对三种机械密封结构模型,利用ANSYS有限元分析软件,模拟机械密封摩擦副端面的变形,讨论了橡胶O形密封圈不同受力边界条件下机械密封端面变形的规律。研究发现当动环、静环均采用SiC时,在静态(结构分析)时,该三种不同支撑结构的摩擦副端面均形成发散间隙,端面变形受支撑边界接触应力的影响较大;热结构耦合分析发现其动环、静环端面间隙呈收敛间隙运转时,热边界条件影响更大。当动环采用石墨,静环采用SiC时,发现其端面间隙可能为收敛型也可能为发散型,这与支撑边界有关。故密封环支撑边界条件的不同会影响动环端面变形,同时动、静环材料的弹性模量对端面的变形有较大影响,从而会影响密封性能。该研究对机械密封设计有指导意义。

关键词: 机械密封, O形圈, 支撑边界条件, 端面变形, 数值模拟, 模型, 材料

Abstract:

The mechanical seal ring is supported on the shaft or in the seal cavity by an auxiliary O-ring. Different structural designs will change the seal ring support boundary. Aiming at the three structural models of mechanical seals, this paper simulates the deformation of the end facies of friction pair of mechanical seals by using ANSYS finite element analysis software, and discusses the deformation law of the surfaces of mechanical seals under different stress boundary conditions of rubber O-ring. When SiC is used in both rotating ring and static ring, it is found that divergent clearance is formed on the end faces of the friction pairs of the three kinds of support structures in static state (structural analysis), and the deformation of the end faces is greatly affected by the contact stress of the support boundary. And the thermal structure coupling analysis shows that the three end facies of the rotating ring and the static ring are convergent. When graphite is used in the rotating ring and SiC is used in the static ring, it is found that the end gap may be convergent or divergent, which is related to the support boundary. Therefore, the different supporting boundary conditions of the O-ring will affect the end deformation of the rotating ring during operation. So different support boundary conditions of O-ring of rotating ring will affect the deformation of seal ring s end face. At the same time, the elastic modulus of the material of the dynamic and static rings has a great influence on the deformation of the end face, thus affecting the sealing performance. The research has guiding significance for mechanical seal design.

Key words: mechanical seal, O-ring, support boundary condition, end face deformation, numerical simulation, model, material

中图分类号: 

  • TB 42

图1

三种机械密封结构简图1—弹簧座;2—弹簧;3—推环;4—动环O形圈;5—动环;6—静环;7—静环O形圈;8—密封腔;9—轴;10—挡圈"

图2

摩擦副端面间隙形式"

表1

摩擦副和O形圈的材料参数[19]"

材料

E/

GPa

ερ/(g/cm3)k/(W/(m·K))α/K-1C/(J/(kg·K))
SiC3800.153.121005×10-6875
碳石墨250.151.896.36.5×10-6710
丁腈橡胶7.8×10-30.491.2
聚四氟乙烯0.280.402.30.25610.3×10-5

图3

结构一的网格划分"

图4

结构一的受力边界图"

图5

结构一的热边界条件热通量边界; 对流换热边界; 绝热边界"

表2

网格无关性检验"

网格尺寸/mm网格数节点数动环内径处温度/℃动环端面中径处与对应静环端面的温差/℃
0.659565941.600.85
0.41462151041.980.84
0.32426256942.190.83
0.25472552242.380.82
0.1212152111742.390.82

图6

摩擦副的温度云图"

图7

结构分析时机械密封端面变形"

图8

不同结构橡胶O形圈与动环之间的接触力分布(动环SiC、静环SiC)"

图9

耦合分析时机械密封端面变形(动环SiC、静环SiC)"

图10

动环碳石墨、静环SiC配对摩擦副结构三的变形"

1 Nau B S, Leefe S E. A review of some aspects of the prediction of mechanical seal coning[J]. Tribology Transactions, 1991, 34(4): 611-617.
2 Brunetière N, Modolo B. Heat transfer in a mechanical face seal[J]. International Journal of Thermal Sciences, 2009, 48(4): 781-794.
3 孟祥铠, 吴大转, 王乐勤. 辅助密封影响下机械密封端面变形行为的研究[J]. 润滑与密封, 2008, 33(1): 101-103.
Meng X K, Wu D Z, Wang L Q. Study on deformation behavior of mechanical seal faces influenced by secondary seals[J]. Lubrication Engineering, 2008, 33(1): 101-103.
4 Chen Z, Liu T C, Li J M. The effect of the O-ring on the end face deformation of mechanical seals based on numerical simulation[J].Tribology International, 2016, 97(5): 278-287.
5 Li X, Peng G L, Li Z. Prediction of seal wear with thermal-structural coupled finite element method[J]. Finite Elements in Analysis & Design, 2014, 83(3): 10-21.
6 陶凯, 涂桥安, 孙见君, 等. 基于ANSYS的剖分式机械密封变形分析[J]. 润滑与密封, 2014, 39(3): 84-90.
Tao K, Tu Q A, Sun J J, et al. Deformation analysis of the split mechanical seal based on ANSYS[J]. Lubrication Engineering, 2014, 39(3): 84-90.
7 Samant R N, Phelan P E, Ullah M R. Finite element analysis of residual-stress-induced flatness deviation in banded carbon seals[J]. Finite Elements in Analysis and Design, 2002, 38(9): 785-801.
8 Tournerie B, Brunetiere N, Danos J C. 2D numerical modelling of the TEHD transient behaviour of mechanical face seals[J]. Sealing Technology, 2003, 2003(6): 10-13.
9 Lai T, Gabriel R, Mayer-Yep L. Improved performance seals for pipeline applications[J]. Lubrication Engineering, 2003, 59(8): 18-29
10 廖和滨, 杨晓翔, 刘康林, 等. 机械密封环端面温度场的测试研究[J]. 润滑与密封, 2006, (1): 120-121.
Liao H B, Yang X X, Liu K L, et al. Experimental investigation of mechanical seal ring s surface temperature[J]. Lubrication Engineering, 2006, (1): 120-121.
11 周剑锋, 顾伯勤. 机械密封端面摩擦热与热变形的耦合分析[J]. 核动力工程, 2007, (2): 77-81.
Zhou J F, Gu B Q. Coupling analysis of frictional heat of fluid film and thermal deformation of mechanical seal end faces[J]. Nuclear Power Engineering, 2007, (2): 77-81.
12 钟汝琳. 机械密封环温度场数值模拟分析[J]. 机械, 2008, 35(4): 23-25.
Zhong R L. Numerical simulation analysis on temperature field of mechanical seal ring[J]. Machinery, 2008, 35(4): 23-25.
13 周志鸿, 张康雷, 李静, 等. O形橡胶密封圈应力与接触压力的有限元分析[J]. 润滑与密封, 2006, (4): 86-89.
Zhou Z H, Zhang K L, Li J, et al. Finite element analysis of stress and contact pressure on the rubber sealing O-ring[J]. Lubrication Engineering, 2006, (4): 86-89.
14 Carmody C J. Coupled modelling of mechanical seal faces and secondary seal assemblies[C]// Fluid Machinery Congress 6-7 October 2014. UK: Woodhead Publishing, 2014: 45-54.
15 丁雪兴, 吴昊, 严如奇, 等. 基于ANSYS的机械密封热力耦合变形计算及分析[J]. 兰州理工大学学报, 2014, 40(5): 41-45.
Ding X X, Wu H, Yan R Q, et al. Analysis and calculation of thermal stressing coupled deformation of mechanical seal based on ANSYS[J]. Journal of Lanzhou University of Technology, 2014, 40(5): 41-45.
16 彭旭东, 冯向忠, 胡丹梅, 等. 非接触式气体润滑密封变形的数值分析[J]. 摩擦学学报, 2004, 24(6): 536-540.
Peng X D, Feng X Z, Hu D M, et al. Numerical analysis of deformation of a non-contacting gas lubricated seal[J]. Tribology, 2004, 24(6): 536-540.
17 顾永泉. 机械密封实用技术[M]. 北京: 机械工业出版社, 2001: 19.
Gu Y Q. Practical Technology of Mechanical Seals[M]. Beijing: China Machine Press, 2001: 19.
18 朱家骅. 化工原理(上册)[M]. 2版. 北京: 科学出版社, 2001: 411.
Zhu J Y. Principles of Chemical Engineering (Volume I)[M]. 2nd ed. Beijing: Science Press, 2001: 411.
19 上海市标准化研究院, 中国标准出版社. 中华人民共和国行业标准目录[M]. 北京: 中国标准出版社, 2008: 74-75.
Shanghai Institute of Standardization, China Standards Press. Catalogue of Industry Standards of the People s Republic of China [M]. Beijing: China Standards Press, 2008: 74-75.
20 Yamabe J, Nishimura S. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1977-1989.
21 Kim B, Lee S B, Lee J, et al. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(5): 759-764.
22 Tschoegl N W. Constitutive equations for elastomers[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1971, 9(7): 1959-1970.
23 Hattori G, Serpa A L. Contact stiffness estimation in ANSYS using simplified models and artificial neural networks[J]. Finite Elements in Analysis and Design, 2015, 97(5): 43-53.
24 American Petroleum Institute. API682-4ED. Pumps-Shaft Sealing Systems for Centrifugal and Rotary Pumps: API Standard 682/ISO 21049[S]. Washington, D.C.: API Publishing Services, 2014
25 Raúl B, Parrondo J, Blanco E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers and Fluids, 2010, 39(5): 859-870.
26 郭鹏程. 水力机械内部复杂流动的数值研究与性能预测[D]. 西安: 西安理工大学, 2006.
Guo P C. Numerical study and performance prediction of complex flow in hydraulic machinery[D]. Xi an: Xi an University of Technology, 2006.
27 周剑锋, 顾伯勤. 机械密封环的传热特性分析[J]. 机械工程学报, 2006, 42(9): 201-206.
Zhou J F, Gu B Q. Heat-transfer character analysis of rings of mechanical seal[J]. Journal of Mechanical Engineering, 2006, 42(9): 201-206.
28 顾伯勤, 周剑锋, 陈晔, 等. 机械密封端面间液膜摩擦热的传热规律[J].中国科学(技术科学), 2008, 38(1): 137-147.
Gu B Q, Zhou J F, Chen Y, et al. Heat transfer law of friction heat of liquid film between ends of mechanical seals[J]. Scientia Sinica Technologica, 2008, 38(1): 137-147.
29 周剑锋, 顾伯勤. 机械密封环端面热变形的分析与BP网络预测[J]. 化工学报, 2006, 57(12): 2902-2907.
Zhou J F, Gu B Q. Analysis of thermal deformation of end face of mechanical seal ring and forecast based on BP ANN[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(12): 2902-2907.
30 陈汇龙, 李同, 任坤腾, 等. 端面变形对液体动压型机械密封液膜瞬态特性的影响[J]. 化工学报, 2017, 68(4): 1533-1541.
Chen H L, Li T, Ren K T, et al. Influence of end face deformation on transient characteristics of fluid film in hydrodynamic mechanical seal[J]. CIESC Journal, 2017, 68(4): 1533-1541.
[1] 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888.
[2] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[3] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[4] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[5] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[6] 周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 1802-1811.
[7] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[8] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[9] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[10] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[11] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[12] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[13] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[14] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[15] 黄耀波, 刘佳新, 徐祖华, 赵均, 邵之江. 基于PWA融合模型的注塑过程保压段建模及控制策略[J]. 化工学报, 2020, 71(3): 1103-1110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[2] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[3] . 2013年 第64卷 第1期目 次[J]. 化工学报, 2013, 64(1): 0 .
[4] 赵德明, 李敏, 徐新华. 高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯[J]. 化工学报, 2013, 64(3): 1091 -1098 .
[5] 张弦, 罗才武, 黄登高, 李安, 刘娟娟, 晁自胜. 醛/氨反应合成吡啶碱机理[J]. 化工学报, 2013, 64(8): 2875 -2882 .
[6] 高莉宁,李廷,夏慧芸,张怀强,王小蔓,陈华鑫. 接枝SBS的研究进展及其在改性沥青中的应用[J]. 化工进展, 2014, 33(07): 1773 -1779 .
[7] 何大方, 吴健, 刘战剑, 沈丽明, 汪怀远, 暴宁钟. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888 -2894 .
[8] 张沁丹, 付涛涛, 朱春英, 马友光. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504 -511 .
[9] 赵金龙, 黄弘, 李聪, 王建军. 基于事件链的罐区定量风险评估[J]. 化工学报, 2016, 67(7): 3084 -3090 .
[10] 陈振涛, 武云, 徐春明. 零长柱技术用于分子筛晶内扩散的研究进展[J]. 化工学报, 2016, 67(8): 3170 -3178 .