化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 123-129.doi: 10.11949/0438-1157.20190571

• 流体力学与传递现象 • 上一篇    下一篇

基于真空镀膜技术的薄膜热传感器实验

罗潇(),郭航(),叶芳,马重芳   

  1. 北京工业大学环境与能源工程学院, 传热强化与过程节能教育部重点实验室及传热与能源利用北京市重点实验室,北京 100124
  • 收稿日期:2019-05-27 修回日期:2019-05-29 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 郭航 E-mail:s2015015128@emails.bjut.edu.cn;hangguo@bjut.edu.cn
  • 作者简介:罗潇(1991—),男,硕士研究生,s2015015128@emails.bjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51476003)

Experiment of thin film thermal sensor based on vacuum coating technology

Xiao LUO(),Hang GUO(),Fang YE,Chongfang MA   

  1. MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2019-05-27 Revised:2019-05-29 Online:2019-09-05 Published:2019-11-07
  • Contact: Hang GUO E-mail:s2015015128@emails.bjut.edu.cn;hangguo@bjut.edu.cn

摘要:

采用真空蒸发镀膜技术设计制作了以云母为基片的薄膜热传感器,传感器包括一个用于热流测量的热电堆和一个用于温度测量的热电偶。综合测试发现:云母基片薄膜热传感器性能良好。封装后,薄膜热电偶的静态标定拟合直线相关系数均可以达到0.999。薄膜热流计的静态标定拟合直线的相关系数为0.99439,测头系数为8.78886 W/(m2?μV),灵敏度为0.11378 μV/(W/m2)。薄膜热电偶的动态响应时间是0.446 s且具有良好的复现性。随着加载热流的增大,薄膜热流计的动态响应时间变大,阶跃热流值为600 W/m2时响应时间为0.483 s。

关键词: 膜, 测量, 瞬态响应, 传热, 燃料电池

Abstract:

A thin film thermal sensor based on mica was fabricated by vacuum evaporation coating technology, which comprises a thermopile for heat flow measurement and a thermocouple for temperature measurement. Comprehensive test results show that mica substrate sensor perform satisfactorily. The static calibration fitting linear correlation coefficient of encapsulated film thermocouple can reach 0.999. Correlation coefficient of static calibration fitting line for film heat flow meter was 0.99439, probe coefficient was 8.78886 W/(m2?μV), and sensitivity of film heat flow meter was 0.11378 μV/(W/m2). Dynamic response time of the film thermocouple measured twice was 0.446 s. As the loading heat flow increased, the dynamic response time of film heat flow meter increased. Response time was 0.483 s when the step heat flow value was 600 W/m2.

Key words: film, measurement, transient response, heat transfer, fuel cells

中图分类号: 

  • TK 311

表1

云母基片的厚度和物理性质"

材料厚度/ mm膨胀系数/(μm/K)

热导率/

(W/(m·K))

比热容/(kJ/(kg·K))
云母0.115~250.550.836

图1

薄膜传感器结构图"

图2

薄膜传感器实物图"

图3

引线方案实物图"

图4

云母基片传感器封装前后温度标定结果比较"

图5

基于表面温度校验仪的云母基片传感器热通量的标定结果"

图6

云母基片传感器温度动态响应曲线"

图7

云母基片薄膜传感器温度动态响应复现图"

图8

不同电压时云母基片传感器的动态响应曲线"

图9

不同输入电压下周期性加载热流时云母基片传感器的动态响应曲线"

1 邓元, 张义政, 王瑶, 等. 柔性热电薄膜器件的研究进展[J]. 航空学报, 2014, 35(10): 2733-2746.
DengY, ZhangY Z, WangY, et al. Research progress on the flexible thin-film thermoelectric devices[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2733-2746.
2 HsiaoC C, WuY S. Fabrication of flexible thin-film thermoelectric generators[J]. Journal of the Chinese Institute of Engineers, 2011, 34(6): 809-816.
3 刘海军, 蒋洪川, 吴勐, 等. 陶瓷基Pt/ITO薄膜热电偶的制备与性能研究[J]. 传感器与微系统, 2015, 34(3): 18-20.
LiuH J, JiangH C, WuM, et al. Preparation and properties study of Pt/ITO thin-film thermocouple on ceramic substrates[J]. Transducer and Microsystem Technologies, 2015, 34(3): 18-20.
4 GlatzW, MuntwylerS, HieroldC. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator[J]. Sensors and Actuators A Physical, 2006, 132(1): 337-345.
5 SatishT N, RakeshK P, UmaG, et al. Functional validation of K-type (NiCr-NiMn) thin film thermocouple on low pressure turbine nozzle guide vane (LPT NGV) of gas turbine engine[J]. Experimental Techniques, 2016, 41(2): 1-8.
6 WangW L, ZhangH, DuX J, et al. PCB-integrated thin film thermocouples for transient temperature measurement[J]. Electronics Letters, 2016, 52(13): 1140-1141.
7 祁漫宇, 丁炯, 杨遂军, 等. 薄膜热电偶温度传感器动态标定的仿真研究[J]. 计算机仿真, 2016, 33(6): 325-330.
QiM Y, DingJ, YangS J, et al. Simulation research on thin-film thermocouple temperature sensor dynamic character calibration[J]. Computer Simulation, 2016, 33(6): 325-330.
8 周川, 马勤弟. 基于神经网络辨识的表面温度传感器动态标定及瞬态温度测量[J]. 应用科学学报, 1999, 17(1): 45-50.
ZhouC, MaQ D. A new method of surface temperature sensor dynamic calibration and transient temperature measurement based on neural networks identification[J]. Journal of Applied Sciences, 1999, 17(1): 45-50.
9 ChuD, BilirD T, PeaseR F W, et al. Thin film nano thermocouple sensors for applications in laser and electron beam irradiation[C]//The 12th Transducers, Solid-State Sensors, Actuators and Microsystems, International Conference. Boston, 2003: 1112-1115.
10 蒋均颖. 用于燃料电池温度和热流测量的薄膜传感器的实验研究[D]. 北京: 北京工业大学, 2012.
JiangJ Y. Experimental study of thin film sensors for measuring temperature and heat flux inside fuel cells[D]. Beijing: Beijing University of Technology, 2012.
11 聂志华. 用于小型燃料电池内部参数测量的瞬态热流计实验研究[D]. 北京: 北京工业大学, 2011.
NieZ H. Experimental study of transient heat flux sensor for parameters measurement inside small fuel cells[D]. Beijing: Beijing University of Technology, 2011.
12 曾祥森, 崔云先, 张志军,等. 新型薄膜切削温度传感器动态特性的理论计算[J]. 大连交通大学学报, 2007, 28(2): 21-24.
ZengX S, CuiY X, ZhangZ J, et al. The theoretical calculation of dynamic characteristics of a new thin-film cutting-temperature sensor[J]. Journal of Dalian Jiaotong University, 2007, 28(2): 21-24.
13 JinX H, MaB H, QiuT, et al. ITO thin film thermocouple for transient high temperature measurement in scramjet combustor[C]//International Conference on Solid-State Sensors, Actuators and Microsystems. Kaohsiung, Taiwan, China, 2017: 1148-1151.
14 ZhangZ, TianB, YuQ, et al. A protected tungsten-rhenium thin film thermocouples sensor[C]//International Conference on Nano/micro Engineered and Molecular Systems. Los Angeles, CA, USA, 2017: 796-799.
15 杨丽红, 赵源深. 基于尺寸效应的Cu/CuNi薄膜热电偶灵敏度研究[J]. 电子元件与材料, 2011, 30(11): 16-18.
YangL H, ZhaoY S. Study on the sensitivity of Cu/CuNi thin-film thermocouple based on size effect[J]. Electronic Components and Materials, 2011, 30(11): 16-18.
16 EwingJ, GiffordA, HubbleD, et al. A direct-measurement thin-film heat flux sensor array[J]. Measurement Science & Technology, 2010, 21(10): 1-8.
17 JaspersonB A, SchmaleJ, QuW, et al. Thin film heat flux sensors fabricated on copper substrates for thermal measurements in microfluidic environments[J]. Journal of Micromechanics & Microengineering, 2014, 24(24): 1-11.
18 AzerouB, GarnierB, LahmarJ. Thin film heat flux sensors for accurate transient and unidirectional heat transfer analysis[C]//The 6th European Thermal Sciences Conference. Poitiers, France, 2012: 1-8.
19 AmmarH, GarnineB, MoctarA O E, et al. Thermal analysis of chemical reactions in microchannels using highly sensitive thin-film heat-flux microsensor[J]. Chemical Engineering Science, 2013, 94(5): 150-155.
20 FrankelJ I, KeyhaniM. Theoretical development of a new surface heat flux calibration method for thin-film resistive temperature gauges and co-axial thermocouples[J]. Shock Waves, 2013, 23(2): 177-188.
21 于景荣, 衣宝廉, 张华民, 等. 微型燃料电池的研究与发展[J]. 电源技术, 2004, 28(8): 515-519.
YuJ R, YiB L, ZhangH M, et al. Research and development of micro fuel cells[J]. Chinese Journal of Power Sources, 2004, 28(8): 515-519.
22 刘佳兴. 基于薄膜传感器的燃料电池内部分布式热测量研究[D]. 北京: 北京工业大学, 2013.
LiuJ X. Study of distributed thermal measurement in fuel cells based on thin film sensors[D]. Beijing: Beijing University of Technology, 2013.
23 HeS, MenchM M, TadigadepaS. Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell[J]. Sensors & Actuators A Physical, 2006, 125(2): 170-177.
24 吴铄, 叶芳, 郭航, 等. 不同材料基片薄膜热传感器实验研究[J]. 中国科技论文, 2015, 10(23): 2697-2700+2706.
WuS, YeF, GuoH, et al. Experimental study of thin film thermal sensors on different material substrates[J]. China Sciencepaper, 2015, 10(23): 2697-2700+2706.
25 LeeC Y, ChangC L, ChanP C, et al. Fabrication of micro-sensors based on a parylene thin-film substrate for monitoring proton exchange membrane fuel cells[C]//2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Xiamen, Fujian, China, 2010: 102-105.
26 LeeC Y, ChanP C, LeeC J. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell[J]. Sensors, 2010, 12(10): 11605-11617.
27 LeeC Y, SuA, LiuY C, et al. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor[J]. Sensors, 2009, 9(7): 5068-5075.
28 LeeC Y, LinC H, LoY M. Fabrication of a flexible micro temperature sensor for micro reformer applications[J]. Sensors, 2011, 11(4): 3706-3716.
29 LeeC Y, LeeS J, ShenC C, et al. In-situ measurement of the local temperature distributions for the steam reforming of a methanol micro reformer by using flexible micro temperature sensors[J]. International Journal of Hydrogen Energy, 2011, 36(4): 2869-2876.
30 黄泽铣. 热电偶原理及其检定[M]. 北京: 中国计量出版社, 1993.
HuangZ X. Principle and Calibration of Thermocouples [M]. Beijing: China Metrology Publishing House, 1993.
[1] 李钰冰,杨茉,陆廷康,戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[2] 唐凌虹,杜雪平,曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[3] 魏琳,廖梓豪,蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[4] 朱晨阳, 杨峰, 刘向阳, 何茂刚. 高压肉豆蔻酸甲酯比定压热容的实验测量[J]. 化工学报, 2019, 70(S2): 15-19.
[5] 王宁,张晨宇,徐洪涛,张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[6] 诸凯,谢艳琦,王雅博. 冷冻保存中影响胞内冰生长的因素[J]. 化工学报, 2019, 70(S2): 208-214.
[7] 孟凡斌,段卜月,李栋,王迪,吕妍. 管道高温壁面辐射对激光测量天然气含水量影响分析[J]. 化工学报, 2019, 70(S2): 215-219.
[8] 尹应德,朱冬生,刘世杰,叶周,王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[9] 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[10] 孙艳军, 邸高雷, 夏娟, 王晓坡, 龚娜. 不同冷冻润滑油对HFO1234yf溶解吸收特性的研究[J]. 化工学报, 2019, 70(S2): 25-30.
[11] 侯延彬,高宪文,李翔宇. 采油过程多尺度状态特征生成的有杆泵动态液面预测[J]. 化工学报, 2019, 70(S2): 311-321.
[12] 陈稳稳,刘中良,姜克隽,侯俊先,娄晓歌,李艳霞,廖强,朱恂. 微生物燃料电池处理含柠檬酸钠废水的研究[J]. 化工学报, 2019, 70(S2): 322-328.
[13] 万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335.
[14] 钟秋,杨莉萍,陶冶,雒彩云,徐子君,汪文兵. 磁环境温度测量信号偏差实验研究[J]. 化工学报, 2019, 70(S2): 349-355.
[15] 张中印, 袁诚阳, 樊轩辉, 祝捷, 赵佳飞, 唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] S. K. Lahiri, K. C. Ghanta. Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model[J]. CIESC Journal, 2008, 16(6): 841 -848 .
[2] 周华, 钱宇, 李秀喜, 崔健, Andrzej Kraslawski. The Dynamic Flexibility of Batch Exothermic Reaction System:Take into Account the Effect of the Initial Operational Temperature[J]. CIESC Journal, 2008, 16(6): 916 -922 .
[3] 卢素敏, 马友光, 朱春英, 沈树华, 何清. The Effect of Hydrophobic Modification of Zeolites on CO2 Absorption Enhancement[J]. CIESC Journal, 2009, 17(1): 36 -41 .
[4] 常春, 马晓建, 岑沛霖. Kinetic Studies on Wheat Straw Hydrolysis to Levulinic Acid[J]. CIESC Journal, 2009, 17(5): 835 -839 .
[5] 罗建洪, 李军, 黄平, 黄美英. Kinetic Rate Constant of Liquid Drainage from Colloidal Gas Aphrons[J]. CIESC Journal, 2009, 17(6): 955 -959 .
[6] 龙涛, 邓岳锋, 甘树才, 陈继. Application of Choline Chloride·xZnCl2 Ionic Liquids for Preparation of Biodiesel[J]. CIESC Journal, 2010, 18(2): 322 -327 .
[7] P. Murugesan, K. Mayilsamy, S. Suresh. Heat Transfer and Friction Factor Studies in a Circular Tube Fitted with Twisted Tape Consisting of Wire-nails[J]. CIESC Journal, 2010, 18(6): 1038 -1042 .
[8] 刘平, 姚月, 张兴光, 王军. Rare Earth Metals Ion-exchanged β-Zeolites as Supports of Platinum Catalysts for Hydroisomerization of n-Heptane[J]. CIESC Journal, 2011, 19(2): 278 -284 .
[9] 熊永强, 华贲. 利用液化天然气冷能捕集CO2的动力系统的集成 [J]. 化工学报, 2010, 61(12): 3142 -3148 .
[10] 崔英德, 黎新明. Poly(HEMA-co-AAm)水凝胶对氯霉素的缓释作用 [J]. 化工学报, 2008, 59(9): 2416 -2418 .