化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3941-3948.DOI: 10.11949/0438-1157.20190565

• 催化、动力学与反应器 • 上一篇    下一篇

CO耐硫甲烷化MoS2/Si-ZrO2催化剂的失活原因研究

顾佳1(),辛忠1,2(),高文莉1,何璐铭1,赵瑞1   

  1. 1. 华东理工大学化工学院,上海市多相结构材料化学工程重点实验室,上海 200237
    2. 华东理工大学化工学院,化学工程联合国家重点实验室,上海 200237
  • 收稿日期:2019-05-24 修回日期:2019-07-21 出版日期:2019-10-05 发布日期:2019-10-05
  • 通讯作者: 辛忠
  • 作者简介:顾佳(1991—),女,博士研究生,gujia_1991@163.com
  • 基金资助:
    国家自然科学基金项目(U1203293);中央高校基本科研业务费专项资金(22A1817025);上海学科首席科学家项目(10Xd1401500);中国博士后科学基金项目(2017M611474)

Deactivation behaviors of MoS2/Si-ZrO2 catalyst during sulfur-resistant CO methanation

Jia GU1(),Zhong XIN1,2(),Wenli GAO1,Luming HE1,Rui ZHAO1   

  1. 1. Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    2. State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2019-05-24 Revised:2019-07-21 Online:2019-10-05 Published:2019-10-05
  • Contact: Zhong XIN

摘要:

采用等体积浸渍法制备MoS2/Si-ZrO2催化剂,并对其CO耐硫甲烷化的催化活性稳定性进行评估。结果表明在2H2∶2CO∶1N2(摩尔比)、反应压力2.5 MPa、反应温度 450℃、硫含量0.01%及质量空速 6000 ml/(g·h)的反应条件下,100 h后CO转化率下降11%。深入进行氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)、拉曼光谱(RS)、等离子体发射光谱(ICP-OES)、高分辨透射电子显微镜(HRTEM)、热重分析(TGA)以及元素分析等表征后,发现反应后催化剂表面无明显积炭,但出现了明显的团聚现象。而催化剂失活的根本原因是硫流失的发生,导致具有催化活性的桥键 S 2 2 - 物种转变为S2-物种和H2S。

关键词: 失活, 催化剂, 稳定性, 天然气, 耐硫甲烷化, 桥键 S 2 2 - 物种, 硫流失

Abstract:

The MoS2/Si-ZrO2 catalyst was prepared by an equal volume impregnation method, and the catalytic activity stability of CO for sulfur-tolerant methanation was evaluated. The CO conversion of the MoS2/Si-ZrO2 catalyst decreased by 11% under the following condition: molar ratio of feed gas composition was 2H2∶2CO∶1N2; concentration of H2S was 0.01%; weight hourly space velocity was 6000 ml/(g·h); reaction temperature was 450℃ and reaction pressure was 2.5 MPa. The catalysts were further characterized by hydrogen temperature programmed reduction (H2-TPR), X-rays photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), Raman spectra (RS), inductively coupled plasma emission spectra (ICP-OES), thermogravimetric analysis (TGA) and elemental analysis. The results demonstrated that little carbon deposited on the surface of spent catalyst, which did not cause catalyst deactivation. The minor cause was that MoS2 slabs grew longer and stacked more layers after long-term reaction and then covered the active sites. The root deactivation cause was attributed to parts of catalytic active bridging S 2 2 - species converting to less active S2- species and H2S, which resulted in the loss of active sites and sulfur element.

Key words: deactivation, catalyst, stability, natural gas, sulfur-resistant methanation, bridging S 2 2 - species, sulfur loss

中图分类号: