化工学报 ›› 2020, Vol. 71 ›› Issue (2): 566-574.doi: 10.11949/0438-1157.20190560

• 流体力学与传递现象 • 上一篇    下一篇

含蜡油凝点判断准则的力学涵义

刘稳文1(),吕梦芸1,李学艺1,黄璟1,池立勋1,闫锋2,张劲军1()   

  1. 1.中国石油大学 (北京) 油气管道输送安全国家工程实验室,城市油气输配技术北京市重点实验室, 北京 102249
    2.中国石油天然气股份有限公司管道分公司,管道科技研究中心, 河北,廊坊 065000
  • 收稿日期:2019-05-24 修回日期:2019-11-27 出版日期:2020-02-05 发布日期:2019-12-27
  • 通讯作者: 张劲军 E-mail:lww08@cup.edu.cn;zhangjj@cup.edu.cn
  • 作者简介:刘稳文(1985—),男,博士,讲师, lww08@cup.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(51534007);中国石油大学(北京)科研启动基金项目(01JB0577)

Mechanical meaning of criterion of wax oil gel point

Wenwen LIU1(),Mengyun LYU1,Xueyi LI1,Jing HUANG1,Lixun CHI1,Feng YAN2,Jinjun ZHANG1()   

  1. 1.Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249, China
    2.Petrochina Pipeline R and D Center, Langfang 065000, Hebei, China
  • Received:2019-05-24 Revised:2019-11-27 Online:2020-02-05 Published:2019-12-27
  • Contact: Jinjun ZHANG E-mail:lww08@cup.edu.cn;zhangjj@cup.edu.cn

摘要:

凝点是石油工业中评价油品(包括原油)流动性的一个重要指标,但长期以来对其力学涵义缺乏准确的定量分析。通过对测凝实验中油样受力与变形的定量分析与数值模拟,研究发现在判断凝点的临界状态下,油样的运动形式为一弓形未屈服区绕自由液面上方一固定圆心的转动,且该弓形所对应的弧角固定为137.5°。据此,含蜡油凝点的力学涵义事实上是油品的屈服应力刚好达到可产生该特定运动形式的临界温度。该临界屈服应力与油品密度及试管直径呈正比。在国家标准GB510—1983所规范的测量条件下,临界屈服应力为14.14 Pa;在石油行业标准SY/T0541所规范的测量条件下,临界屈服应力为19.99 Pa。对凝点力学涵义的准确认识,将有助于加深对油品流动性测量与应用的全面理解。

关键词: 非牛顿流体, 屈服应力, 石油, 凝点, 数值模拟

Abstract:

Freezing point is an important indicator for evaluating the fluidity of oil products (including crude oil) in the petroleum industry, but its mechanical meaning has not been accurately quantified for a long time. In this paper, the stress and deformation of oil samples under the critical conditions in the gel point measurement experiment are quantitatively analyzed and numerically simulated. The study clarified the movement of this critical condition for the first time: It is a bow-shaped unyielding region rotating around a fixed center above the free surface. And the arc angle of the bow-shaped unyielding region is 137.5°. According to this result, the mechanical meaning of the gel point is, in fact, the temperature at which the yield stress of the crude oil reaches a certain critical value. This value is proportional to the oil density and the diameter of the test tube, so the critical yield stress is 14.14 Pa according to the GB 510—1983 and the critical yield stress is 19.99Pa according to the SY/T 0541-2009. The clarified mechanical meaning of the gel point will help to deepen the understanding of oil fluidity and its measurement and application.

Key words: non-Newtonian fluids, yield stress, petroleum, gel point, numerical simulation

中图分类号: 

  • TQ 028.8

图1

问题描述"

表1

问题所涉及的量纲"

物理量量纲
dL
hL
gLT-2
ρML-3
τyML-1T-2

图2

临界状态受力分析简图"

图3

行标法测凝实验的几何条件与计算网格"

图4

流动开始 1×10-7s后试管近自由液面处密度分布(图中箭头指向为重力方向) "

图5

流动开始 1×10-7s后试管近自由液面处速度分布(图中箭头指向为重力方向) "

图6

流动开始 1×10-7s后试管近自由液面处应变率分布(图中箭头指向为重力方向) "

图7

两种假想油品的屈服应力-温度曲线"

1 Chala G T, Sulaiman S A, Japper-Jaafara A. Flow start-up and transportation of waxy crude oil in pipelines: a review[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 251: 69- 87.
2 杨筱蘅. 输油管道设计与管理[M]. 东营: 中国石油大学出版社, 2013: 120- 192.
Yang X H. Design and Management of Oil Transportation Pipelines[M]. Dongying: China University of Petroleum Press, 2013: 120- 192.
3 Aiyejina A, Chakrabarti D P, Pilgrim A, et al. Wax formation in oil pipelines: a critical review[J]. International Journal of Multiphase Flow, 2011, 37( 7): 671- 694.
4 Rogel E, Ovalles C, Vien J, et al. Asphaltene characterization of paraffinic crude oils[J]. Fuel, 2016, 178: 71- 76.
5 Andrade D E V, Da Cruz A C B, Franco A T, et al. Influence of the initial cooling temperature on the gelation and yield stress of waxy crude oils[J]. Rheologica Acta, 2015, 54( 2): 149- 157.
6 中华人民共和国国家能源局. 输油管道工程设计规范: GB50253-2014[S]. 北京: 中国标准出版社, 2014.
National Energy Administration of the People s Republic of China. Code for design of oil transportation pipeline engineering: GB50253—2014[S]. Beijing: Standards Press of China, 2014.
7 中华人民共和国国家能源局. 原油管道运行规范: SY/5536—2016[S]. 北京: 中国标准出版社, 2016.
National Energy Administration of the People s Republic of China. Specification for operation of crude oil pipelines: SY/5536—2016[S]. Beijing: Standards Press of China, 2016.
8 Soliman E A, Elkatory M R, Hashem A I, et al. Synthesis and performance of maleic anhydride copolymers with alkyl linoleate or tetra-esters as pour point depressants for waxy crude oil[J]. Fuel, 2018, 211: 535- 547.
9 Yao B, Li C, Zhang X, et al. Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosage of the amino-functionalized polymethylsilsesquioxane (PAMSQ) microsphere[J]. Fuel, 2018, 220: 167- 176.
10 Behbahani T J, Beigi A A M, Taheri Z, et al. The effect of amino [60] fullerene derivatives on pour point and rheological properties of waxy crude oil[J]. Journal of Molecular Liquids, 2015, 211: 308- 314.
11 邸进申, 李英杰, 郑辉杰, 等. H89-2原油流动性改进剂的研究[J]. 石油学报, 1998, 19( 2): 103- 106.
Di J S, Li Y J, Zheng H J, et al. Study on H89-2 flow improver for crude oil[J]. Acta Petrolei Sinica, 1998, 19( 2): 103- 106.
12 Soldi R A, Oliveira A R S, Barbosa R V, et al. Polymethacrylates: pour point depressants in diesel oil[J]. European Polymer Journal, 2007, 43( 8): 3671- 3678.
13 Deshmukh S, Bharambe D P. Synthesis of polymeric pour point depressants for Nada crude oil (Gujarat, India) and its impact on oil rheology[J]. Fuel Processing Technology, 2008, 89( 3): 227- 233.
14 Elbanna S A, Rhman A M, Al-Hussaini A S, et al. Synthesis and characterization of polymeric additives based on α-olefin as pour point depressant for Egyptian waxy crude oil [J]. Petroleum Science & Technology, 2017, 35( 10): 1047- 1054.
15 Barasha D, Rohit S, Arnab M, et al. Synthesis and evaluation of oleic acid based polymeric additive as pour point depressant to improve flow properties of Indian waxy crude oil[J]. Journal of Petroleum Science and Engineering, 2018, 170: 105- 111.
16 Rohit S, Vikas M, Hari V. Synthesis of PMMA/modified graphene oxide nanocomposite pour point depressant and its effect on the flow properties of Indian waxy crude oil[J], Fuel, 2019, 235: 1245- 1259.
17 American Society for Testing and Materials. Standard test method for pour point of crude oils: ASTM D5853-17[S]. Annual Book of ASTM.
18 中华人民共和国国家标准化管理委员会. 石油产品凝点测定法: GB/T510—83[S]. 北京: 中国标准出版社, 1983.
Standardization Administration of the People s Republic of China. Petroleum products—determination of solidification point: GB/T510—83[S]. Beijing: Standards Press of China, 2014.
19 中华人民共和国国家能源局. 原油凝点测定法: SY/T0541—2009[S]. 北京: 中国标准出版社, 2009.
National Energy Administration of the People s Republic of China. Test method for gel point of crude oils: SY/T0541—2009[S]. Beijing: Standards Press of China, 2009.
20 张劲军, 潘道兰, 涂华明, 等. 剪切作用对加剂原油凝点影响的数学模型[J]. 石油学报, 2004, 25( 2): 96- 99.
Zhang J J, Pan D L, Tu H M, et al. A mathmatichal model for shear effect of gel point of crude beneficiated with pour-point depressants[J]. Acta Petrolei Sinica, 2004, 25( 2): 96- 99.
21 Li H, Zhang J, Song C, et al. The influence of the heating temperature on the yield stress and pour point of waxy crude oils[J]. Journal of Petroleum Science & Engineering, 2015, 135: 476- 483.
22 李鸿英, 丁建林, 张劲军. 含蜡原油流动特性与热历史和剪切历史的关系[J]. 油气储运, 2008, 27( 5): 16- 20.
Li H Y, Ding J L, Zhang J J. Relationship between flow characteristics of waxy crude oil and thermal and shear histories[J]. Oil & Gas Storage and Transportation, 2008, 27( 5): 16- 20.
23 蒋永兴. 凝点的物理意义[J]. 油气储运, 1990, 9( 3): 16- 18.
Jiang Y X. The physical meaning of gel point[J]. Oil & Gas Storage and Transportation, 1990, 9( 3): 16- 18.
24 宋超凡. 含蜡原油凝点温度附近的屈服特性研究[D]. 北京: 中国石油大学(北京), 2011.
Song C F. Study of yield stress at temperatures around the gel point of waxy crude oils[D]. Beijing: China University of Petroleum, 2011.
25 Huang H, Wang W, Peng Z, et al. The influence of nanocomposite pour point depressant on the crystallization of waxy oil [J]. Fuel, 2018, 221: 257- 268.
26 Yao B, Li C, Yang F, et al. Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant[J]. Fuel, 2016, 184: 544- 554.
27 Yao B, Li C, Zhang X, et al. Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosage of the amino-functionalized polymethylsilsesquioxane (PAMSQ) microsphere[J]. Fuel, 2018, 220: 167- 176.
28 Yang F, Yao B, Li C, et al. Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosages of the polymethylsilsesquioxane (PMSQ) microsphere: an experimental study[J]. Fuel, 2017, 207: 204- 213.
29 He C, Ding Y, Chen J, et al. Influence of the nano-hybrid pour point depressant on flow properties of waxy crude oil[J]. Fuel, 2015, 167: 40- 48.
30 Yao B, Li C, Yang F, et al. Organically modified nano-clay facilitates pour point depressing activity of polyoctadecylacrylate[J]. Fuel, 2016, 166: 96- 105.
[1] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[2] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[3] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[4] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[5] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[6] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[7] 贾文华, 田茂诚, 张冠敏, 魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[8] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[9] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[10] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
[11] 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[12] 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
[13] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[14] 王斯民, 孙利娟, 宋晨, 张早校, 文键. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362.
[15] 王浩宇, 刘应书, 张传钊, 杨雄, 陈江伟. π型向心径向流吸附器变质量流动特性研究[J]. 化工学报, 2019, 70(9): 3385-3395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王洪斌,徐春明. 渣油催化裂化提升管反应器性能的数值模拟——喷嘴射流速度与角度对流动反应的影响 [J]. CIESC Journal, 1999, 50(2): 200 -207 .
[2] 马庆兰, 陈光进. 油水乳液体系水合分离塔的模拟计算 [J]. 化工学报, 2010, 61(9): 2401 -2408 .
[3] 余剑, 朱剑虹, 岳君容, 孙立鑫, 刘新华, 许光文. 微型流化床反应动力学分析仪的研制与应用 [J]. 化工学报, 2009, 60(10): 2669 -2674 .
[4] 李鑫钢,杜英生,余国琮. 多组分精馏计算的新方法 [J]. CIESC Journal, 1988, 39(2): 243 -248 .
[5] 张泽廷,王树楹,余国琮. 填料塔传质模型的研究——二维混合池随机模型 [J]. CIESC Journal, 1989, 40(1): 53 -59 .
[6] 王琳娜; 李静海. 非均匀气固两相系统中多尺度传质模型 [J]. CIESC Journal, 2001, 52(8): 708 -714 .
[7] 杨春雁,杨卫亚,凌凤香,范 峰. 负载型金属催化剂表面金属分散度的测定 [J]. CIESC Journal, 2010, 29(8): 1468 .
[8] 黄青山, 张伟鹏, 杨超, 毛在砂. 环流反应器的流动、混合与传递特性[J]. CIESC Journal, 2014, 65(7): 2465 -2473 .
[9] 张君涛,刘健康,梁生荣,钟汉斌. 废塑料化学转化制燃料的催化剂研究进展[J]. 化工进展, 2014, 33(10): 2644 -2649 .
[10] 彭丽, 吴迎亚, 李佳瑶, 高金森, 蓝兴英. 基于DEM模拟气固鼓泡床中颗粒碰撞参数对流场间歇性的影响[J]. 化工学报, 2015, 66(6): 2041 -2048 .