化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 130-137.doi: 10.11949/0438-1157.20190530

• 流体力学与传递现象 • 上一篇    下一篇

具有质热源的方腔内对流传热传质及其非线性特性

李钰冰1(),杨茉1(),陆廷康2,戴正华2   

  1. 1. 上海理工大学能源与动力工程学院,上海 200093
    2. 上海市浦东新区特种设备监督检测所,上海 200136
  • 收稿日期:2019-05-16 修回日期:2019-06-20 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 杨茉 E-mail:lybusst@163.com;yangm@usst.edu
  • 作者简介:李钰冰(1991—),女,博士研究生,lybusst@163.com
  • 基金资助:
    国家自然科学基金项目(51736007);上海市质量技术监督局科研项目(2018-54)

Study on heat and mass transfer and nonlinear characteristics with heat and mass source in cavity

Yubing LI1(),Mo YANG1(),Tingkang LU2,Zhenghua DAI2   

  1. 1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2. Pudong New Area Special Equipment Supervision and Inspection Institution, Shanghai 200136, China
  • Received:2019-05-16 Revised:2019-06-20 Online:2019-09-05 Published:2019-11-07
  • Contact: Mo YANG E-mail:lybusst@163.com;yangm@usst.edu

摘要:

以火灾为背景,对一个带有质热源的方腔进行了研究。针对不同Ra,浮升力比NcSrDf,探讨了腔内流体的传热传质规律及其非线性特性。结果表明,存在临界Rac使流体流动由导热驱动流动转变为对流驱动流动,随着Ra增大质热源表面传热传质强度增加,流体由稳态流动转为振荡流动。当Nc>-1时,对流传热系数和对流传质系数增大,流体由稳态转化为倍周期振荡,最后转化为混沌。增大SrDf可增强传热传质能力。

关键词: 质热源, 数值模拟, 传热传质, 振荡, 混沌

Abstract:

In this paper, a square cavity with mass and heat source was studied with the background of fire. According to the different Rayleigh number(Ra) and buoyance ratio Nc, Srand Df, the heat and mass transfer law and nonlinear characteristics of the fluid in the cavity are discussed. The results show that the critical Rac causes the fluid flow to change from the heat-induced driving flow to the convection-driven flow. As Ra increases the heat and mass transfer of the surface of the heat and mass source, the fluid changes from steady-state flow to oscillating state. When Nc>-1, the convective heat transfer coefficient and the convective mass transfer coefficient increase, and the fluid transforms from steady state to double-period oscillation, and finally to chaos. Increasing Sr and Df can increase flow and heat and mass transfer.

Key words: mass and heat source, numerical simulation, heat and mass transfer, oscillation, chaos

中图分类号: 

  • TK 124

图1

物理模型"

图2

不同Ra的等浓度线(Nc=0)"

图3

Nu和Sh随Ra变化趋势(Nc=0)"

图4

不同Nc下的等浓度线变化(Ra=104)"

图5

Nu和Sh随Nc变化趋势(Ra=104)"

图6

Sr和Df对传热传质的影响"

图7

不同Nc下流体的相图(Nc>-1)"

图8

流体振荡图(Ra=105, Nc=-1)"

图9

Ra=104为初值所得振荡瞬时流线(Nc=-1)"

图10

相图(a)和频谱图(b)(Nc=-1)"

1 SankarM, ParkJ, YounghaeD O. Numerical study of natural convection in a vertical porous annulus with internal heat source (ENG) [J]. International Journal of Heat & Mass Transfer, 2011, 54(7/8): 1493-1505.
2 TasakaY, TakedaY. Effects of heat source distribution on natural convection induced by internal heating [J]. International Journal of Heat & Mass Transfer, 2005, 48(6): 1164-1174.
3 ShenC, YangM, ZhangY, et al. Effects of slotted structures on nonlinear characteristic of natural convection in a cylinder with an internal concentric [J]. Numerical Heat Transfer, Part A: Applications, 2016, 70(5): 447-459.
4 LiZ, YangM, ChenQ C, et al. Numerical solution of melting in a discretely heated enclosure using an interfacial tracking method[J]. Numerical Heat Transfer, Part A: Applications, 2013, 64(11): 841-857.
5 KarimiF, XuH T, WangZ, et al. Numerical simulation of unsteady natural convection from heated horizontal circular cylinders in a square enclosure[J]. Numerical Heat Transfer, Part A: Applications, 2014, 65(8): 715-731.
6 LinJ H, ChenC K, YangY T, et al. The inverse estimation of the thermal boundary behavior of a heated cylinder normal to a laminar air stream [J]. International Journal of Heat and Mass Transfer, 2000, 43 (21): 3991-4001.
7 JuncuG. Conjugate heat/mass transfer from a circular cylinder with an internal heat/mass source in laminar crossflow at low Reynolds numbers [J]. International Journal of Heat & Mass Transfer, 2005, 48(2):419-424.
8 HillA A. Double-diffusive convection in a porous medium with a concentration based internal heat source [J]. Proceedings Mathematical Physical & Engineering Sciences, 2005, 461(2054): 561-574.
9 NazariM, LouhghalamL, KayhaniM H. Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 22-30.
10 李贝贝, 孙文科,吕浩,等. 方腔内双扩散混合对流振荡特性研究[J]. 工程热物理学报, 2015, 36(4): 874-878.
LiB B, SunW K, LyuH, et al. The study of oscillating characteristic of double diffusive mixed convection in an enclosure [J]. Journal of Engineering Thermophysics, 2015, 36(4): 874-878.
11 石科峰, 卢文强. 正交梯度下双扩散对流的数值模拟[J]. 工程热物理学报, 2005, 26(2): 328-330.
ShiK F, LuW Q. Numerical simulation of double-diffusive convection with cross gradients [J]. Journal of Engineering Thermophysics, 2005, 26(2): 328-330.
12 DeepikaN, NarayanaP A L. Nonlinear stability of double-diffusive convection in a porous layer with throughflow and concentration based internal heat source [J]. Transport in Porous Media, 2016, 111(3): 751-762.
13 MattaA, HillA A. Double-diffusive convection in an inclined porous layer with a concentration-based internal heat source [J]. Continuum Mechanics and Thermodynamics, 2017, 30(1): 165-173.
14 XuH T, LiB B. Lattice BGK simulations of the double diffusive mixed convection in an enclosure with different outlet locations [J]. International Journal of Heat and Mass Transfer, 2016, 92: 158-172.
15 XuH T, LuoZ Q. Lattice Boltzmann simulations of the double-diffusive natural convection and oscillation [J]. International Journal of Thermal Sciences, 2019, 136: 159-171.
16 PlattenJ K. The Soret effect: a review of recent experimental results [J]. Journal of Applied Mechanics, 2014, 73(1): 5-15.
17 MalashettyM S, GaikwadS N. Effect of cross diffusion on double diffusive convection in the presence of horizontal gradients[J]. International Journal of Engineering Science, 2002, 40(7): 773-787.
18 GaikwadS N, MalashettyM S, PrasadK R. An analytical study of linear and non-linear double diffusive convection with Soret and Dufour effects in couple stress fluid [J]. International Journal of Non-Linear Mechanics, 2007, 42(7): 903-913.
19 GaikwadS N, KouserS. Double diffusive convection in a couple stress fluid saturated porous layer with internal heat source [J]. International Journal of Heat & Mass Transfer, 2014, 78(11): 1254-1264.
20 AltawallbehA A, BhadauriaB S, HashimI. Linear and nonlinear double-diffusive convection in a saturated anisotropic porous layer with Soret effect and internal heat source [J]. International Journal of Heat & Mass Transfer, 2013, 59(1): 103-111.
21 WangJ, YangM, HeY L, et al. Oscillatory double-diffusive convection in a horizontal cavity with Soret and Dufour effects [J]. International Journal of Thermal Sciences, 2016, 106(7): 57-69.
22 WangJ, YangM, ZhangY W. Coupling-diffusive effects on thermosolutal buoyancy convection in a horizontal cavity [J]. Numerical Heat Transfer, Part A, 2015, 68: 583-597.
23 WangJ, YangM, ZhangY W. Onset of double-diffusive convection in horizontal cavity with Soret and Dufour effects [J]. International Journal of Heat and Mass Transfer, 2014, 78: 1023-1031,
24 NithyadeviN, YangR J. Double diffusive natural convection in a partially heated enclosure with Soret and Dufour effects [J]. International Journal of Heat & Fluid Flow, 2009, 30(5): 902-910.
25 BhuvaneswariM, SivasankaranS, KimY J. Numerical study on double diffusive mixed convection with a Soret effect in a two-sided lid-driven cavity [J]. Numerical Heat Transfer, Part A: Applications, 2011, 59(7): 543-560.
26 GrayD D, GiorginiA. The validity of the boussinesq approximation for liquids and gases [J]. International Journal of Heat & Mass Transfer, 1976, 19(5): 545-551.
27 BarakosG, MitsoulisE, AssimacopoulosD. Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions [J]. International Journal for Numerical Methods in Fluids, 1994, 18(7): 695-719.
28 BégheinC, HaghighatF, AllardF. Numerical study of double-diffusive natural convection in a square cavity [J]. International Journal of Heat & Mass Transfer, 1992, 35(4): 833-846.
29 YangM, ShenY Y, XuH T, et al. Numerical investigation of the nonlinear flow characteristics in an ultra-supercritical utility boiler furnace [J]. Applied Thermal Engineering, 2014, 88: 237-247.
30 刘丽娜, 杨茉, 王治云, 等. 扩缩通道内流动和换热非线性特性的数值模拟[J]. 上海理工大学学报, 2015, 37(5): 440-444.
LiuL N , YangM, WangZ Y, et al. Nonlinear flow and heat transfer phenomena in a channel with sudden expansion followed by sudden contraction [J]. Journal of University of Shanghai for Science & Technology, 2015, 37(5): 440-444.
[1] 魏琳,廖梓豪,蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[2] 王宁,张晨宇,徐洪涛,张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[3] 贾文华,田茂诚,张冠敏,魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[4] 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[5] 蒋二辉,张东伟,周俊杰,沈超,魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[6] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
[7] 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[8] 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
[9] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[10] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[11] 王斯民, 孙利娟, 宋晨, 张早校, 文键. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362.
[12] 王浩宇, 刘应书, 张传钊, 杨雄, 陈江伟. π型向心径向流吸附器变质量流动特性研究[J]. 化工学报, 2019, 70(9): 3385-3395.
[13] 赵加佩, 周昊, 周明煕, 王甫, 袁金良. 铁矿石烧结中混合料特性对火焰烽面与烧结性能的影响机理研究[J]. 化工学报, 2019, 70(8): 3177-3187.
[14] 程永刚, 刘姣, 韩振南, 石磊, 许光文. 输送床甲烷化催化剂颗粒的热质传递行为与反应机制[J]. 化工学报, 2019, 70(8): 2876-2887.
[15] 苗苗, 孔皓, 张缦, 吴玉新, 杨海瑞, 张建胜. 多元煤灰灰熔点及晶体组成特性研究[J]. 化工学报, 2019, 70(8): 2909-2918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周云龙, 陈飞, 孙斌. Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine[J]. CIESC Journal, 2008, 16(6): 932 -840 .
[2] 宋凯, 王海清, 李平, 冯志刚. Quality Based Prioritized Sensor Fault Monitoring Methodology[J]. CIESC Journal, 2008, 16(4): 584 -589 .
[3] 黎新明, 崔英德. Study on Synthesis and Chloramphenicol Release of Poly(2-hydroxyethylmethacrylate-co-acrylamide)Hydrogels[J]. CIESC Journal, 2008, 16(4): 640 -645 .
[4] 魏瑞平, 郭麦平, 王军. Preparation, Characterization and Catalytic Behavior of 12-Molybdophosphoric Acid Encapsulated in the Supercage of Cs+-exchanged Y Zeolite[J]. CIESC Journal, 2009, 17(1): 58 -63 .
[5] 白莹, 张平, 郭翰飞, 陈崧哲, 王来军, 徐景明. Purification of Sulfuric and Hydriodic Acids Phases in the Iodine-sulfur Process[J]. CIESC Journal, 2009, 17(1): 160 -166 .
[6] 梁英华, 郭红霞, 陈红萍, 吕敬德, 张波波. Effect of Doping Cerium in the Support of Catalyst Pd-Co/Cu-Co-Mn Mixed Oxides on the Oxidative Carbonylation of Phenol[J]. CIESC Journal, 2009, 17(3): 401 -406 .
[7] Soodabeh Nikmanesh, Jalil Moghadasi, Mohammad Mehdi Papari. Calculation of Transport Properties of CF4+Noble Gas Mixtures[J]. CIESC Journal, 2009, 17(5): 814 -821 .
[8] A. C. Kumoro, Harcharan Singh, Masitah Hasan. Solubility of Piperine in Supercritical and Near Critical Carbon Dioxide[J]. CIESC Journal, 2009, 17(6): 1014 -1020 .
[9] 白赢, 彭家建, 胡应乾, 厉嘉云, 邱化玉, 来国桥. Effect of Aminoaromatic Acids as Additives on the Activity and Selectivity of the Platinum-catalyzed Hydrosilylation of Alkenes[J]. CIESC Journal, 2009, 17(6): 1038 -1042 .
[10] Ignacio E. Grossmann, Mariano Martín. Energy and Water Optimization in Biofuel Plants[J]. CIESC Journal, 2010, 18(6): 914 -922 .