化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 138-145.doi: 10.11949/0438-1157.20190527
Linghong TANG1(),Xueping DU2,Min ZENG3
摘要:
对两排椭圆管翅式换热器实验元件在不同进风角度下(30°、45°、60°和90°)的换热性能进行了实验研究,结果表明,在测试的迎风速度范围内随着进风角度的减小换热器换热性能减弱,并给出了测试工况范围内的换热性能经验关联式;对不同进风角度下空气侧换热性能进行了数值计算,与实验结果进行对比,符合良好;最后对不同进风角度下换热器内不同通道内空气平均速度的分布进行了研究,解释了换热性能差异的原因,为相应的工程应用提供理论参考。
中图分类号:
1 | 卜永东, 杨立军, 杜小泽, 等. 电站空冷技术[J]. 现代电力, 2013, 30(3): 69-79. |
BuY D, YangL J, DuX Z, et al. Review of dry cooling technologies in power plants[J]. Modern Electric Power, 2013, 30(3): 69-79. | |
2 | KimN H, LeeK J, JeongY B. Airside performance of oval tube heat exchangers having sine wave fins under wet condition[J]. Applied Thermal Engineering, 2014, 66(1/2): 580-589. |
3 | GholamiA, WahidM A, MohammedH A. Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns[J]. International Journal of Heat & Mass Transfer, 2017, 106: 573-592. |
4 | DiazD, ValenciaA. Heat transfer in an oval tube heat exchanger with different kinds of longitudinal vortex generators[J]. Heat Transfer Research, 2017, 48(18): 1707-1725. |
5 | ZhaoX, TangG, ShiY, et al. Experimental study of heat transfer and pressure drop for H-type finned oval tube with longitudinal vortex generators and dimples under flue gas[J]. Heat Transfer Engineering, 2018, 39(7/8): 608-616. |
6 | GanL, LuX, WangQ. Experimental and theoretical study on hydrodynamic characteristics of tapered fluidized beds[J]. Advanced Powder Technology, 2014, 25(3): 824-831. |
7 | 杨涛, 袁益超. 管束结构对开缝翅片椭圆管换热器性能的影响[J]. 化工学报, 2018, 69(4): 1365-1373. |
YangT, YuanY C. Effects of tube bundle structure on heat transfer and resistance characteristics of slit finned elliptical tube heat exchangers[J]. CIESC Journal, 2018, 69(4): 1365-1373. | |
8 | 赵兰萍, 杨志刚. 管间距对矩形翅片椭圆管换热管束性能的影响[J]. 同济大学学报(自然科学版), 2016, 44(1): 150-154. |
ZhaoL P, YangZ G. Effect of tube pitches on performance of rectangular finned elliptical tube bundles[J]. Journal of Tongji University (Natural Science), 2016, 44(1): 150-154. | |
9 | 郭永红, 杜小泽, 杨晓茹, 等. 间接空冷机组空冷塔塔群内空气流动及传热性能研究[J]. 热能动力工程, 2018, (1): 33-41. |
GuoY H, DuX Z, YangX R, et al. Study of the air flow and heat transfer performance inside an air cooling tower group of an indirect air cooling unit[J]. Journal of Engineering for Thermal Energy and Power, 2018, (1): 33-41. | |
10 | 陈学宏, 赵元宾, 孙奉仲. 翅片散热管束流动传热性能对进风角度敏感性的研究[J]. 电站系统工程, 2017, (4): 13-16. |
ChenX H, ZhaoY B, SunF Z. Study on sensitivity of flow and heat transfer performance of finned tubes bundles to air intake[J]. Power System Engineering, 2017, (4): 13-16. | |
11 | 王为术, 张雨飞, 常娜娜. 600 MW火电机组间接空冷塔流动换热特性数值研究[J]. 郑州大学学报(工学版), 2014, 35(1): 51-54. |
WangW S, ZhangY F, ChangN N. Numerical simulation on the flow field and heat transfer characteristics of indirect air-cooling tower in 600MW supercritical thermal power unit[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(1):51-54. | |
12 | LiuZ, LiH, ShiL, et al. Numerical study of the air inlet angle influence on the air-side performance of plate-fin heat exchangers[J]. Applied Thermal Engineering, 2015, 89: 356-364. |
13 | 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器流动性能的影响[J]. 动力工程学报, 2017, 37(8): 649-654. |
TangL H, DuX P, ZengM. Influence of air inlet angle on flow characteristics of a finned oval-tube heat exchanger[J]. Journal of Chinese Society of Power Engineering, 2017, 37(8): 649-654. | |
14 | 史美中, 王中铮. 热交换器原理与设计[M]. 南京: 东南大学出版社, 2009. |
ShiM Z, WangZ Z. Principle of Heat Exchangers and Design[M]. Nanjing: Southeast University Press, 2009. | |
15 | 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. |
YangS M, TaoW Q. Heat Transfer[M]. Beijing: Higher Education Press, 2006. | |
16 | GnielinskiV. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368. |
17 | VersteegH K, MalalasekeraW. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. Pearson Education, 2007. |
[1] | 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129. |
[2] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[3] | 王宁,张晨宇,徐洪涛,张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200. |
[4] | 尹应德,朱冬生,刘世杰,叶周,王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227. |
[5] | 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243. |
[6] | 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75. |
[7] | 侯德鑫, 陈玥, 叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84. |
[8] | 谈周妥, 郭志罡, 杨剑, 王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100. |
[9] | 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34. |
[10] | 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78. |
[11] | 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157. |
[12] | 李安军, 陈晓庆, 李健, 黄超, 周振, 卢奇. 两种波纹深度板片传热及阻力特性的对比实验研究[J]. 化工学报, 2019, 70(9): 3377-3384. |
[13] | 杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319. |
[14] | 陈裕博, 杨昭, 翟瑞, 冯彪, 吕子建, 赵文仲, 葛滢滢. R290/R1234yf与矿物油的互溶性测试及评价方法[J]. 化工学报, 2019, 70(9): 3248-3255. |
[15] | 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336. |