化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 138-145.doi: 10.11949/0438-1157.20190527

• 流体力学与传递现象 • 上一篇    下一篇

进风角度对椭圆管翅式换热器传热性能影响

唐凌虹1(),杜雪平2,曾敏3   

  1. 1. 西安石油大学机械工程学院,陕西 西安 710065
    2. 中国矿业大学电力与动力工程学院,江苏 徐州 221116
    3. 西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-05-19 修回日期:2019-05-23 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 唐凌虹 E-mail:lhtang97@163.com
  • 作者简介:唐凌虹(1979—),男,博士,副教授,lhtang97@163.com
  • 基金资助:
    国家自然科学基金项目(51776157);西安石油大学青年科研创新团队项目(2019QNKYCXTD10)

Investigation of air inlet angle influence on air-side heat transfer performance of finned oval tube heat exchanger

Linghong TANG1(),Xueping DU2,Min ZENG3   

  1. 1. School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, Shaanxi, China
    2. School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    3. Key Laboratory of Thermo- Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-05-19 Revised:2019-05-23 Online:2019-09-05 Published:2019-11-07
  • Contact: Linghong TANG E-mail:lhtang97@163.com

摘要:

对两排椭圆管翅式换热器实验元件在不同进风角度下(30°、45°、60°和90°)的换热性能进行了实验研究,结果表明,在测试的迎风速度范围内随着进风角度的减小换热器换热性能减弱,并给出了测试工况范围内的换热性能经验关联式;对不同进风角度下空气侧换热性能进行了数值计算,与实验结果进行对比,符合良好;最后对不同进风角度下换热器内不同通道内空气平均速度的分布进行了研究,解释了换热性能差异的原因,为相应的工程应用提供理论参考。

关键词: 椭圆管翅式换热器, 进风角度, 传热, 实验验证, CFD

Abstract:

Heat transfer performance of a finned oval tube heat exchanger with various air inlet angles (30°,45°,60° and 90°, respectively) were experimentally investigated in this study. Experimental results showed that heat transfer performance decreased with decreasing air inlet angle, and the experimental correlation of the air-side Nusselt number was obtained in the studied range of Reynolds numbers and air inlet angles. Heat transfer performance of various air inlet angles was simulated by using CFD software Ansys Fluent, and the simulated results agreed well with the experimental results. The numerical results indicated that with the decrease of air inlet angle, the uniformity of air velocity distribution in z-direction became worse, therefore, the comprehensive heat transfer performance was worse than that of the case with uniform flow distribution.

Key words: finned oval tube heat exchanger, air inlet angle, heat transfer, experimental validation, CFD

中图分类号: 

  • TK 124

图1

实验装置系统示意图1—风洞入口;2,9—过渡段;3,7—收缩段;4,6—稳定段;5—实验段;8—测速段;10—风机;11—加热棒;12—水箱;13—阀门;14—水泵;15—涡轮流量计;16—数据采集系统;17—热电偶网;18—U形管差压计"

图2

换热器实验元件"

图3

进风角度示意图"

图4

两排实验元件示意图"

表1

实验元件结构参数"

参数数值
横向管间距Pt/mm26.7
纵向管间距Pl/mm60
管壁厚度δt/mm1.5
翅片厚度δf/mm0.35
翅片间距Fs/mm2.5
椭圆管短轴2b/mm14
椭圆管长轴2a/mm36
迎风面宽度W/mm600
迎风面高度H/mm320

图5

不同进风角度下空气侧ho实验值比较"

图6

不同进风角度下空气侧Nu实验值比较"

图7

Nu实验值与计算值对比"

图8

换热器部分计算模型"

图9

进风角度45°时Nu实验结果与计算结果比较"

图10

不同进风角度下空气侧Nu计算结果比较"

图11

不同进风角度时y方向上的速度分布(ufr=1.8 m/s)"

图12

不同进风角度时z方向第一排管中间速度分布(ufr=1.8 m/s)"

图13

不同进风角度时z方向第二排管中间速度分布(ufr=1.8 m/s)"

1 卜永东, 杨立军, 杜小泽, 等. 电站空冷技术[J]. 现代电力, 2013, 30(3): 69-79.
BuY D, YangL J, DuX Z, et al. Review of dry cooling technologies in power plants[J]. Modern Electric Power, 2013, 30(3): 69-79.
2 KimN H, LeeK J, JeongY B. Airside performance of oval tube heat exchangers having sine wave fins under wet condition[J]. Applied Thermal Engineering, 2014, 66(1/2): 580-589.
3 GholamiA, WahidM A, MohammedH A. Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns[J]. International Journal of Heat & Mass Transfer, 2017, 106: 573-592.
4 DiazD, ValenciaA. Heat transfer in an oval tube heat exchanger with different kinds of longitudinal vortex generators[J]. Heat Transfer Research, 2017, 48(18): 1707-1725.
5 ZhaoX, TangG, ShiY, et al. Experimental study of heat transfer and pressure drop for H-type finned oval tube with longitudinal vortex generators and dimples under flue gas[J]. Heat Transfer Engineering, 2018, 39(7/8): 608-616.
6 GanL, LuX, WangQ. Experimental and theoretical study on hydrodynamic characteristics of tapered fluidized beds[J]. Advanced Powder Technology, 2014, 25(3): 824-831.
7 杨涛, 袁益超. 管束结构对开缝翅片椭圆管换热器性能的影响[J]. 化工学报, 2018, 69(4): 1365-1373.
YangT, YuanY C. Effects of tube bundle structure on heat transfer and resistance characteristics of slit finned elliptical tube heat exchangers[J]. CIESC Journal, 2018, 69(4): 1365-1373.
8 赵兰萍, 杨志刚. 管间距对矩形翅片椭圆管换热管束性能的影响[J]. 同济大学学报(自然科学版), 2016, 44(1): 150-154.
ZhaoL P, YangZ G. Effect of tube pitches on performance of rectangular finned elliptical tube bundles[J]. Journal of Tongji University (Natural Science), 2016, 44(1): 150-154.
9 郭永红, 杜小泽, 杨晓茹, 等. 间接空冷机组空冷塔塔群内空气流动及传热性能研究[J]. 热能动力工程, 2018, (1): 33-41.
GuoY H, DuX Z, YangX R, et al. Study of the air flow and heat transfer performance inside an air cooling tower group of an indirect air cooling unit[J]. Journal of Engineering for Thermal Energy and Power, 2018, (1): 33-41.
10 陈学宏, 赵元宾, 孙奉仲. 翅片散热管束流动传热性能对进风角度敏感性的研究[J]. 电站系统工程, 2017, (4): 13-16.
ChenX H, ZhaoY B, SunF Z. Study on sensitivity of flow and heat transfer performance of finned tubes bundles to air intake[J]. Power System Engineering, 2017, (4): 13-16.
11 王为术, 张雨飞, 常娜娜. 600 MW火电机组间接空冷塔流动换热特性数值研究[J]. 郑州大学学报(工学版), 2014, 35(1): 51-54.
WangW S, ZhangY F, ChangN N. Numerical simulation on the flow field and heat transfer characteristics of indirect air-cooling tower in 600MW supercritical thermal power unit[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(1):51-54.
12 LiuZ, LiH, ShiL, et al. Numerical study of the air inlet angle influence on the air-side performance of plate-fin heat exchangers[J]. Applied Thermal Engineering, 2015, 89: 356-364.
13 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器流动性能的影响[J]. 动力工程学报, 2017, 37(8): 649-654.
TangL H, DuX P, ZengM. Influence of air inlet angle on flow characteristics of a finned oval-tube heat exchanger[J]. Journal of Chinese Society of Power Engineering, 2017, 37(8): 649-654.
14 史美中, 王中铮. 热交换器原理与设计[M]. 南京: 东南大学出版社, 2009.
ShiM Z, WangZ Z. Principle of Heat Exchangers and Design[M]. Nanjing: Southeast University Press, 2009.
15 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
YangS M, TaoW Q. Heat Transfer[M]. Beijing: Higher Education Press, 2006.
16 GnielinskiV. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
17 VersteegH K, MalalasekeraW. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. Pearson Education, 2007.
[1] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[2] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[3] 王宁,张晨宇,徐洪涛,张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[4] 尹应德,朱冬生,刘世杰,叶周,王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[5] 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[6] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[7] 侯德鑫, 陈玥, 叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[8] 谈周妥, 郭志罡, 杨剑, 王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100.
[9] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[10] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[11] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[12] 李安军, 陈晓庆, 李健, 黄超, 周振, 卢奇. 两种波纹深度板片传热及阻力特性的对比实验研究[J]. 化工学报, 2019, 70(9): 3377-3384.
[13] 杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319.
[14] 陈裕博, 杨昭, 翟瑞, 冯彪, 吕子建, 赵文仲, 葛滢滢. R290/R1234yf与矿物油的互溶性测试及评价方法[J]. 化工学报, 2019, 70(9): 3248-3255.
[15] 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张爱利, 陈洵. Improve Ethanol Yield Through Minimizing Glycerol Yield in Ethanol Fermentation of Saccharomyces cerevisiae[J]. CIESC Journal, 2008, 16(4): 620 -625 .
[2] 潘春妹, 闵健, 刘心洪, 高正明. Investigation of Fluid Flow in a Dual Rushton Impeller Stirred Tank Using Particle Image Velocimetry[J]. CIESC Journal, 2008, 16(5): 693 -699 .
[3] 陈玉保, 宁平, 谢有畅, 陈云华, 孙暠, 刘志云. Pilot-scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption[J]. CIESC Journal, 2008, 16(5): 715 -721 .
[4] 王志方, 郑丹星. Exergy Analysis and Retrofitting of Natural Gas-based Acetylene process[J]. CIESC Journal, 2008, 16(5): 812 -818 .
[5] Claudio A. Faúndez, José O. Valderrama. Activity Coefficient Models to Describe Vapor-Liquid Equilibrium in Ternary Hydro-Alcoholic Solutions[J]. CIESC Journal, 2009, 17(2): 259 -267 .
[6] 钟振忠, 陈俊勋, 庄平吉. Enhancement of Proton Exchange Membrane Fuel Cell Performance Using a Novel Tapered Gas Channel[J]. CIESC Journal, 2009, 17(2): 286 -297 .
[7] K. Rajagopal, S. S. Jayabalakrishnan. Volumetric and Viscometric Studies of 4-Aminobutyric Acid in Aqueous Solutions of Salbutamol Sulphate at 308.15,313.15 and 318.15K[J]. CIESC Journal, 2009, 17(5): 796 -804 .
[8] Lo Kuo-Chao, Wu Keng-Tung, Chyang Chien-Song, Ting Wei-The. A New Study on Combustion Behavior of Pine Sawdust Characterized by the Weibull Distribution[J]. CIESC Journal, 2009, 17(5): 860 -868 .
[9] 丁川, 范毓润. Measurement of Diffusion Coefficients of Air in Silicone Oil and in Hydraulic Oil[J]. CIESC Journal, 2011, 19(2): 205 -211 .
[10] 潘崇根, 李瑛, 蒋文, 刘化章. Effects of Reaction Conditions on Performance of Ru Catalyst and Iron Catalyst for Ammonia Synthesis[J]. CIESC Journal, 2011, 19(2): 273 -277 .