化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 54-61.doi: 10.11949/0438-1157.20190521

• 热力学 • 上一篇    下一篇

基于TDTR技术水合物热导率测量方法

张中印(),袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟()   

  1. 大连理工大学海洋能源利用与节能教育部重点实验室,辽宁 大连 116024
  • 收稿日期:2019-05-15 修回日期:2019-05-27 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 唐大伟 E-mail:yin@mail.dlut.edu.cn;dwtang@dlut.edu.cn
  • 作者简介:张中印(1991—),男,硕士研究生,yin@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51720105007)

Thermal conductivity measurement of hydrate based on TDTR technology

Zhongyin ZHANG(),Chengyang YUAN,Xuanhui FAN,Jie ZHU,Jiafei ZHAO,Dawei TANG()   

  1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2019-05-15 Revised:2019-05-27 Online:2019-09-05 Published:2019-11-07
  • Contact: Dawei TANG E-mail:yin@mail.dlut.edu.cn;dwtang@dlut.edu.cn

摘要:

四氢呋喃水合物(THF)是典形的笼形水合物,目前有关其热导率的报道较少,且都存在测量样品不是单一相、测量过程水合物发生分解等问题。采用基于飞秒脉冲激光的时域热反射法(TDTR)测量THF热导率。根据样品常温下是流体的特点,设计了可同时适用样品制备及TDTR测量的温控台,实现THF热导率非接触原位测量。获得THF热导率为0.6 W/(m?K),Al/THF界面热导为90.3 MW/(m2?K)。该实验结果有助于理解并完善固体水合物微观导热机理,明晰水分子笼子和客体分子的耦合关系。

关键词: 水合物, TDTR, 热传导, 界面, 原位测量

Abstract:

Tetrahydrofuran (THF) hydrate is a typical cage structure hydrate, and there are few reports on the thermal conductivity of THF, meanwhile, there are many problems such as the measurement sample is not a single phase and the hydrate is decomposed during the measurement process. In this paper, time domain thermal reflectance (TDTR) technique based on femtosecond pulse laser is employed to measure the thermal conductivity of tetrahydrofuran hydrate. According to the characteristic that the sample is fluid at room temperature, a temperature control platform which can be used for both sample preparation and TDTR measurement is designed to realize the non-contact in-situ measurement of THF thermal conductivity. The result of THF thermal conductivity is 0.6 W/(m?K), and interface thermal conductivity between Al and THF is 90.3 MW/(m2·K). The experimental results obtained in this paper have great significance on understanding the microcosmic heat conduction mechanism of solid hydrates and clarifying the coupling relationship between the water molecules cage and guest molecules.

Key words: hydrate, TDTR, heat conduction, interface, in-situ measurement

中图分类号: 

  • TK 01.9

图1

水合物三种晶体结构[1] "

图2

TDTR实验系统光路图"

表1

石英玻璃参数"

厚度/ μ m 纯度 C/( M J / ( m 3 ? K ) ) λ/(W/(m?K))
500 ± 50 >99.99% 1.63 1.30

图3

样品结构"

图4

皮秒声学法测量Al膜厚度"

图5

水合物样品制备方法示意图"

图6

半导体控温台"

图7

样品内部双向热输运示意图"

图8

实验数据与理论模型拟合结果"

图9

水合物样品各参数敏感度"

表2

THF热导率测试过程中各参数误差传递过程"

α Sα Sα /Sx Ex , α /% Ex /%
α = α Al 0.455 1.5696 3.1392 10.18
α = λ S i O 2 0.51688 1.7831 8.9155
α = C S i O 2 0.219134 0.756 3.78
x = λ THF 0.289874

表3

Al/THF界面热导测试过程中各参数误差传递过程"

α Sα Sα /Sx Ex , α /% Ex /%
α = δ Al 0.455 2.718 5.436 16.58
α = λ S i O 2 0.51688 3.088 15.44
α = C S i O 2 0.219134 1.3092 2.6184
x =G Al/THF 0.167386
1 Sloan Jr E D , Koh C A . Clathrate Hydrates of Natural Gases [M]. Boca Raton: CRC Press, 2007.
2 Waite W F , Stern L A , Kirby S H , et al . Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate [J]. Geophysical Journal International, 2007, 169(2): 767-774.
3 Rosenbaum E J , English N J , Johnson J K , et al . Thermal conductivity of methane hydrate from experiment and molecular simulation [J]. The Journal of Physical Chemistry B, 2007, 111(46): 13194-13205.
4 Gupta A , Kneafsey T J , Moridis G J , et al . Composite thermal conductivity in a large heterogeneous porous methane hydrate sample [J]. The Journal of Physical Chemistry B, 2006, 110(33): 16384-16392.
5 Andersson P , Ross R G . Effect of guest molecule size on the thermal conductivity and heat capacity of clathrate hydrates [J]. Journal of Physics C: Solid State Physics, 1983, 16(8): 1423-1432.
6 Andersson O , Suga H . Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates [J]. Journal of Physics and Chemistry of Solids, 1996, 57(1): 125-132.
7 Cook J G , Leaist D G . An exploratory study of the thermal conductivity of methane hydrate [J]. Geophysical Research Letters, 2013, 10(5): 397-399.
8 Huang D , Fan S . Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution [J]. Journal of Chemical & Engineering Data, 2004, 49(5): 1479-1482.
9 Ross R G , Andersson P , Bäckström G . Unusual PT dependence of thermal conductivity for a clathrate hydrate [J]. Nature, 1981, 290(5804): 322-323.
10 Huang D Z , Fan S S . Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution [J]. Journal of Chemical & Engineering Data, 2004, 49(5): 1479-1482.
11 Rosenbaum E J , English N J , Johnson J K , et al . Thermal conductivity of methane hydrate from experiment and molecular simulation [J]. Journal of Physical Chemistry B, 2007, 111(46): 13194-13205.
12 Waite W F , Stern L A , Kirby S H , et al . Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate [J]. Geophysical Journal International, 2010, 169(2): 767-774.
13 Krivchikov A I , Gorodilov B Y , Korolyuk O A , et al . Thermal conductivity of methane-hydrate [J]. Journal of Low Temperature Physics, 2005, 139(5/6): 693-702.
14 Handa Y P , Cook J G . Thermal conductivity of xenon hydrate [J]. Journal of Physical Chemistry, 2002, 91(25): 6327-6328.
15 Krivchikov A I , Gorodilov B Y , Korolyuk O A , et al . Thermal conductivity of Xe clathrate hydrate at low temperatures [J]. Physical Review B, 2006, 73(6): 064203.
16 Cohn J L , Nolas G S , Fessatidis V , et al . Glasslike heat conduction in high-mobility crystalline semiconductors [J]. Physical Review Letters, 1998, 82(4): 779-782.
17 Stoll R D , Bryan G M . Physical properties of sediments containing gas hydrates [J]. Journal of Geophysical Research Solid Earth, 2012, 84(B4): 1629-1634.
18 Ross R G , Andersson P . Clathrate and other solid phases in the tetrahydrofuran–water system [J]. Canadian Journal of Chemistry, 1982, 60(60): 881-892.
19 Tse J S , White M A . Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate [J]. Journal of Physical Chemistry, 1988, 92(17): 5006-5011.
20 Li D , Liang D , Peng H , et al . Thermal conductivities of methane-methylcyclohexane and tetrabutylammonium bromide clathrate hydrate [J]. Journal of Thermal Analysis & Calorimetry, 2015, 123(2): 1-7.
21 Krivchikov A I , Manzhelii V G , Korolyuk O A , et al . Thermal conductivity of tetrahydrofuran hydrate [J]. Physical Chemistry Chemical Physics Pccp, 2005, 7(5): 728-730.
22 Nolas G S , Beekman M , Gryko J , et al . Thermal conductivity of elemental crystalline silicon clathrate Si136 [J]. Applied Physics Letters, 2003, 82(6): 910-912.
23 Yang J , Morelli D T , Meisner G P , et al . Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites [J]. Physical Review B, 2003, 67(16): 165207.
24 Tritt T M . Thermal Conductivity: Theory, Properties, and Applications [M]. Berlin: Springer Science & Business Media, 2005.
25 Jiang H , Myshakin E M , Jordan K D , et al . Molecular dynamics simulations of the thermal conductivity of methane hydrate [J]. The Journal of Physical Chemistry B, 2008, 112(33): 10207-10216.
26 English N J , Tse J S . Mechanisms for thermal conduction in methane hydrate [J]. Physical Review Letters, 2009, 103(1): 015901.
27 Thomsen C , Grahn H T , Maris H J , et al . Surface generation and detection of phonons by picosecond light pulses [J]. Phys. Rev. B Condens. Matter, 1986, 34(6): 4129-4138.
28 Cahill D G . Analysis of heat flow in layered structures for time-domain thermoreflectance [J]. Review of Scientific Instruments, 2004, 75(12): 5119-5122.
29 姚贵策, 苑昆鹏, 吴硕, 等 . 独立探头3ω法表征甲烷水合物热导率和热扩散率 [J]. 化工学报, 2016, 67(5): 1665-1672.
Yao G C , Yuan K P , Wu S , et al . Characterizing of thermal conductivity and thermal diffusivity of methane hydrate by free-standing sensor 3ω method [J]. CIESC Journal, 2016, 67(5): 1665-1672.
30 Handa Y P , Hawkins R E , Murray J J . Calibration and testing of a Tian-Calvet heat-flow calorimeter Enthalpies of fusion and heat capacities for ice and tetrahydrofuran hydrate in the range 85 to 270 K ☆ [J]. Journal of Chemical Thermodynamics, 1984, 16(7): 623-632.
31 Gundrum B C , Cahill D G , Averback R S . Thermal conductance of metal-metal interfaces [J]. Physical Review B, 2005, 72(24): 245426.
[1] 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160.
[2] 诸凯, 谢艳琦, 王雅博. 冷冻保存中影响胞内冰生长的因素[J]. 化工学报, 2019, 70(S2): 208-214.
[3] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[4] 张雷刚, 许波, 施娟, 陈振乾. 微重力条件下FC-72在针肋表面冷凝传热的实验研究[J]. 化工学报, 2019, 70(S1): 45-53.
[5] 张光华, 董秋辰, 刘晶. 多苯环双子季铵盐在油水两相中的传质性能[J]. 化工学报, 2019, 70(S1): 61-68.
[6] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[7] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[8] 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
[9] 闫磊, 陈思宇, 肖美良子, 丁伟. 煤制烯烃基长链烷基二甲苯合成研究[J]. 化工学报, 2019, 70(S1): 235-241.
[10] 向静, 王宏, 朱恂, 丁玉栋, 廖强, 陈蓉. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552.
[11] 周雷, 周骛, 郭延昂, 蔡小舒. 射流卷吸边界层内相干结构的实验研究[J]. 化工学报, 2019, 70(7): 2520-2527.
[12] 徐国稳, 李坤, 蒋祎璠, 黄明骏, 房东旭, 蔡姗姗. 三类随机分形结构下干土壤有效热导率的介观研究[J]. 化工学报, 2019, 70(7): 2496-2502.
[13] 叶学民, 李明兰, 张湘珊, 杨少东, 李春曦. 平板浸涂过程中的液膜排液影响因素[J]. 化工学报, 2019, 70(6): 2164-2173.
[14] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[15] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗明检, 胡冰, 姜涛, 夏淑倩, 马沛生. Analysis and Comparison of the Alpha Functions of SRK Equation of State[J]. CIESC Journal, 2008, 16(5): 766 -771 .
[2] 范志伟, 周兴贵, 罗灵爱, 袁渭康. Numerical Investigation of Constructal Distributors with Different Configurations[J]. CIESC Journal, 2009, 17(1): 175 -178 .
[3] Achanta Ramakrishna Rao, Bimlesh Kumar. Simulating Surface Aeration Systems at Different Scale of Mixing Time[J]. CIESC Journal, 2009, 17(2): 355 -358 .
[4] 杨全, 朱慎林, 李以圭. Prediction of Critical Endpoints Based on the PR Equation of State[J]. CIESC Journal, 2009, 17(5): 791 -795 .
[5] Mohammad Mehdi Papari, Jalil Moghadasi, Soodabeh Nikmanesh, Mahmood Reza Dehghan. Determination of Transport Properties for Dilute Gas Mixtures Involving Carbon Tetrafluoride[J]. CIESC Journal, 2010, 18(2): 297 -305 .
[6] 杨权, Giuseppe Mosca, Mario Roza. Characteristics of Trays Using Inertial Separation Technology[J]. CIESC Journal, 2010, 18(6): 954 -961 .
[7] 常煦, 杨忠华, 曾嵘, 杨改, 颜家保. Production of Chiral Aromatic Alcohol by Asymmetric Reduction with Vegetable Catalyst[J]. CIESC Journal, 2010, 18(6): 1029 -1033 .
[8] 陆向红, 徐之超, 计建炳. Effects of Pulse Ultrasound on Adsorption of Geniposide on Resin 1300 in a Fixed Bed[J]. CIESC Journal, 2011, 19(6): 1060 -1065 .
[9] 黄大新,童张法,陈小鹏. 钛交联膨润土酯化催化性能研究 [J]. CIESC Journal, 2000, 51(S1): 139 -142 .
[10] 张英,秦炜,戴猷元. 三辛胺萃取分离乳酸-醋酸 [J]. CIESC Journal, 2001, 52(2): 141 -145 .