化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 237-243.doi: 10.11949/0438-1157.20190509
Yang XU1,2(),Zhangjing ZHENG1,2(
),Mingjia LI3
摘要:
为了构建一种具有普适性的完全熔化时间预测公式,引入一种无量纲储热时间的概念,定义为实际储热时间与基准储热时间的比值。基准储热时间通过静态近似法获得,可以基本反映完全熔化时间与其影响参数的非线性关系,有效降低了无量纲储热时间拟合关联式的非线性度,并扩大了其适用范围。针对套管式固液相变储热器,通过数值模拟方法分析了Stefan数、无量纲长度以及外内径比率三个参数对无量纲储热时间的影响规律,并拟合了关联式。结果显示,所构建的经验关联式具有较好的应用范围和预测准确度;在考虑的参数范围内,快速预测结果的误差可以控制在10%以内。所提出的无量纲储热时间及其关联式构建方法可推广应用于其他固液相变储热器。
中图分类号:
1 | ZhengZ J, XuY. A novel system for high-purity hydrogen production based on solar thermal cracking of methane and liquid-metal technology: thermodynamic analysis[J]. Energy Conversion and Management, 2018, 157: 562-574. |
2 | ZhengZ J, HeY L, LiY S. An entransy dissipation-based optimization principle for solar power tower plants[J]. Science China: Technological Sciences, 2014, 57: 773-783. |
3 | 熊亚选, 栗博, 吴玉庭, 等. 添加纳米 SiO2 对四元溴化盐相变热物性的影响[J]. 化工学报, 2017, 68(4):1299-1305. |
XiongY X, LiB, WuY T, et al. Improving phase change thermal properties of quaternary bromides by adding SiO2 nanoparticle[J]. CIESC Journal, 2017, 68(4): 1299-1305. | |
4 | LiuM, SamanW, BrunoF. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132. |
5 | MedranoM, YilmazM O, NoguésM, et al. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems[J]. Applied Energy, 2009, 86(10): 2047-2055. |
6 | YangX H, LuZ, BaiQ, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Applied Energy, 2017, 202: 558-570. |
7 | ZhuZ Q, HuangY K, HuN, et al. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio[J]. Applied Thermal Engineering, 2018,128: 966-972. |
8 | TaoY B, YouY, HeY L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485. |
9 | WuW, ZhangS L, WangS F. A novel lattice Boltzmann model for the solid-liquid phase change with the convection heat transfer in the porous media[J]. International Journal of Heat and Mass Transfer, 2017, 104: 675-687. |
10 | YangJ, YangL, XuC, et al. Experimental study on enhancement of thermal energy storage with phase-change material[J]. Applied Energy, 2016, 169: 164-176. |
11 | XuY, RenQ, ZhengZ J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. |
12 | XuY, LiM J, ZhengZ J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880. |
13 | ZhengZ J, XuY, LiM J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance[J]. Applied Energy, 2018, 220: 447-454. |
14 | XuH J, ZhaoC Y. Thermal performance of cascaded thermal storage with phase-change materials (PCMs)(Ⅰ): Steady cases[J]. International Journal of Heat and Mass Transfer, 2017, 106: 932-944. |
15 | YuanY P, CaoX L, XiangB, et al. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage[J]. Solar Energy, 2016, 136: 365-378. |
16 | KamkariB, ShokouhmandH. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins[J]. International Journal of Heat and Mass Transfer, 2014, 78: 839-851. |
17 | RathodM K, BanerjeeJ. Thermal performance of a phase change material-based latent heat thermal storage unit[J]. Heat Transfer—Asian Research, 2014, 43(8): 706-719. |
18 | RathodM K, BanerjeeJ. Development of correlation for melting time of phase change material in latent heat storage unit[J]. Energy Procedia, 2015, 75: 2125-2130. |
19 | VollerV R, CrossM. Estimating the solidification/melting times of cylindrically symmetric regions[J]. International Journal of Heat and Mass Transfer, 1981, 24(9): 1457-1462. |
20 | SolomonA D. Melt time and heat flux for a simple PCM body[J]. Solar Energy, 1979, 22(3): 251-257. |
21 | RileyD S, SmithF T, PootsG. The inward solidification of spheres and circular cylinders[J]. International Journal of Heat and Mass Transfer, 1974, 17(12): 1507-1516. |
22 | HoC J, ViskantaR. Heat transfer during melting from an isothermal vertical wall[J]. Journal of Heat Transfer, 1984, 106(1): 12-19. |
23 | ZhangY, ChenZ, WangQ, et al. Melting in an enclosure with discrete heating at a constant rate[J]. Experimental Thermal and Fluid Science, 1993, 6(2): 196-201. |
24 | BilirL, IlkenZ. Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers[J]. Applied Thermal Engineering, 2005, 25(10): 1488-1502. |
25 | BeluskoM, TayN, LiuM, et al. Effective tube-in-tank PCM thermal storage for CSP applications(Ⅰ): Impact of tube configuration on discharging effectiveness[J]. Solar Energy, 2016, 139: 733-743. |
26 | TayN H S, BrunoF, BeluskoM. Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system[J]. International Journal of Heat and Mass Transfer, 2012, 55: 5931-5940. |
27 | DittusF, BoelterL. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12: 3-22. |
28 | AlexiadesV. Mathematical Modeling of Melting and Freezing Processes[M]. Boca Raton: CRC Press, 1993: 145. |
29 | ZhengZ J, LiM J, HeY L. Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J]. Applied Energy, 2017, 185: 1152-1161. |
30 | ZhengZ J, LiM J, HeY L. Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD[J]. International Journal of Heat and Mass Transfer, 2015, 87: 376-379. |
31 | ZhengZ J, XuY, HeY L. Thermal analysis of a solar parabolic trough receiver tube with porous insert optimized by coupling genetic algorithm and CFD[J]. Science China: Technological Sciences, 2016, 59(10): 1475-1485. |
32 | ZhengZ J, HeY, HeY L, et al. Numerical optimization of catalyst configurations in a solar parabolic trough receiver–reactor with non-uniform heat flux[J]. Solar Energy, 2015,122:113-125. |
33 | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001:220. |
TaoW Q. Numerical Heat Transfer[M]. 2nd ed.Xi’an: Xi’an Jiaotong University Press, 2001:220. | |
34 | 杨世铭, 陶文铨. 传热学[M]. 2版. 北京: 高等教育出版社, 1998:168. |
YangS M, TaoW Q. Heat Transfer[M]. 2nd ed.Beijing: Higher Education Press, 1998:168. |
[1] | 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129. |
[2] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[3] | 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145. |
[4] | 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154. |
[5] | 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200. |
[6] | 贾文华, 田茂诚, 张冠敏, 魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207. |
[7] | 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227. |
[8] | 蒋二辉,张东伟,周俊杰,沈超,魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249. |
[9] | 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342. |
[10] | 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348. |
[11] | 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375. |
[12] | 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75. |
[13] | 侯德鑫, 陈玥, 叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84. |
[14] | 谈周妥, 郭志罡, 杨剑, 王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100. |
[15] | 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34. |
|