化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 76-84.doi: 10.11949/0438-1157.20190493

• 热力学 • 上一篇    下一篇

基于热成像的背胶石墨膜面向热导率测试方法

侯德鑫(),陈玥,叶树亮()   

  1. 中国计量大学工业与商贸计量技术研究所,浙江 杭州 310018
  • 收稿日期:2019-05-09 修回日期:2019-07-11 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 叶树亮 E-mail:dexin_hou@163.com;itmt_paper@126.com
  • 作者简介:侯德鑫(1983—),男,硕士,实验师,dexin_hou@163.com
  • 基金资助:
    浙江省自然科学基金项目(LY18F030011)

Measurement of in-plane thermal conductivity of glued graphite film based on thermal imaging

Dexin HOU(),Yue CHEN,Shuliang YE()   

  1. Institute of Industry and Trade Measurement Technique, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • Received:2019-05-09 Revised:2019-07-11 Online:2019-09-05 Published:2019-11-07
  • Contact: Shuliang YE E-mail:dexin_hou@163.com;itmt_paper@126.com

摘要:

导热石墨膜广泛用于电子设备中的发热器件散热,面向热导率是反映其传热性能的关键参数,但目前行业中一般只提供裸材数据,无法对背胶石墨膜进行测试,给石墨膜用户的热设计和产品质量管理带来不便。提出一种基于热成像的背胶石墨膜面向热导率稳态测试方法,样品直接黏附于平整台面测试,通过温度梯度环路积分消除热流不均匀的影响,通过热损失标定减小表面换热和旁路传热带来的测试误差。基于多种规格石墨膜产品和具有参考数据的金属薄片进行实验,结果证明了方法的有效性。背胶石墨膜测试数据和裸材参数的比较表明二者有很大偏差,表明石墨膜产品标称参数和实际参数可能有较大偏差,应用中需直接测试背胶石墨膜参数。

关键词: 石墨膜, 热导率, 热成像, 环路积分, 热损失标定, 稳态, 传热, 复合材料

Abstract:

Graphite film is widely used in heat dissipation of heat-generating devices in electronic equipment. In-plane thermal conductivity is the key parameter which describes the heat transfer performance. However, currently only the graphite bare material data is provided in the industry, and the glued graphite film cannot be tested. It brings great inconvenience to thermal design and product quality management. In this paper, a thermal imaging-based steady-state test method for the thermal conductivity of glued graphite film is proposed. The sample is directly adhered to the flat surface which is heated by electric heating film. The temperature gradient is integrated along a loop to eliminate the influence of non-uniform thermal flow, and the thermal loss on the surface and bypass are reduced by calibration. Experiments based on a variety of glued graphite film products and metal sheets with reference data verified the validity of the method. The comparison between the test data of the glued graphite film and the bare graphite material parameters showed that great difference may exist, indicating that the nominal performance and actual performance of the graphite film product may be significantly different, and that test on glued graphite film rather than bare material is necessary.

Key words: graphite film, thermal conductivity, thermal imaging, loop integration, thermal loss calibration, steady state, heat transfer, composites

中图分类号: 

  • TB 941

图1

闪光法In-Plane模式测试时多层复合结构与单一均质等效模型对比"

表1

背胶石墨膜结构和材料参数"

薄层材料

密度/

(kg·m-3)

比热容/

(J·kg-1·K-1)

面向热导率/

(W·m-1·K-1)

纵向热导率/

(W·m-1·K-1)

厚度/μm
绝缘层 1200 2000 0.25 0.25 15
石墨层 1900 850 1500 10 25
胶层 800 2000 1 1 20

表2

等效的单一均质材料参数"

模型 密度/(kg·m-3) 比热容/(J·kg-1·K-1) 面向热导率/(W·m-1·K-1) 纵向热导率/(W·m-1·K-1) 厚度/μm
稳态等效 1358 1330 625 0.73 60

图2

基于热成像的石墨膜面向热导率测试系统基本结构"

图3

轴对称二维仿真模型"

图4

石墨膜面向热导率测试时的温度场"

图5

实验装置和热平衡时的温度场数据"

表3

金属薄片面向热导率测试结果"

编号 材料 厚度/mm 面向热导率参考值/( W·m-1·K-1) 面向热导率测试值/(W·m-1·K-1) 相对偏差/%
1 1060 0.17 234 255 9.0
2 304 0.34 16 17.1 6.7
3 304 0.44 16 16.1 0.7
4 304 0.44 16 16.5 2.9
5 5020 0.46 138 132 -4.0
6 T2 0.58 407 394 -3.1
7 1060 0.46 234 225 -3.8
8 A3 0.49 80 71.8 -10.2
9 H62 0.39 108.9 115 5.7
10 H62 0.48 108.9 108 -0.5
11 T2 0.39 407 386 -5.1
12 T2 0.39 407 400 -1.8
13 1060 0.17 234 255 9.0
14 A3 0.30 80 83.3 4.2

表4

石墨膜样品面向热导率测试结果"

石墨膜规格 面向热导率/( W·m-1·K-1)
测试1 测试2 测试3 均值 标准差 相对标准差/%
17 μm单层背胶 945 977 984 969 20.8 2.1
17 μm双层背胶 529 524 539 531 7.6 1.4
25 μm单层背胶 672 674 667 671 3.6 0.5
25 μm双层背胶 800 829 805 811 15.5 1.9
40 μm单层背胶(A款) 681 663 657 667 12.5 1.9
40 μm单层背胶(B款) 642 660 651 651 9.0 1.4
40 μm双层背胶 725 713 755 731 21.6 3.0

表5

裸材样品的闪光法测试数据"

石墨膜裸材规格 厚度/μm 密度/(g·cm-3)

闪光法测试/

(W·m-1·K-1)

17 μm裸材 18 1.979 1588
25 μm裸材 26 1.882 1398
40 μm裸材 40 1.978 1464

表6

石墨膜样品测试数据和基于裸材预测的数据对比"

石墨膜规格 总厚/μm

实测密度/

(kg·m-3)

密度预测/

(kg·m-3)

热导率预测/

(W·m-1·K-1)

本文测试/

(W·m-1·K-1)

相对偏差/%
17 μm单层背胶 35 1785 1424 771 969 23
17 μm双层背胶 90 1002 1308 600 531 -12
25 μm单层背胶 40 1317 1514 874 671 -26
25 μm双层背胶 80 1548 1514 874 811 -7.5
40 μm单层背胶A款 65 1354 1563 901 667 -30
40 μm单层背胶B款 55 1222 1684 1065 651 -48
40 μm双层背胶 125 1467 1590 937 731 -25

图6

背胶石墨膜样品密度偏差和热导率偏差"

1 Takasugi H , Teraki S , Kurokawa T , et al . Development of the thin film with high thermal conductivity for power devices[C]// IEEE Components, Packaging and Manufacturing Technology Society. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). Florida, USA: IEEE, 2014: 1776-1781.
2 姜辉 . 基于石墨烯/铜复合材料的散热薄膜导热性能研究[D]. 南京: 南京航空航天大学, 2017.
Jiang H . Research on thermal conductance of thin films based on graphene / copper composite[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
3 Sharma S , Kumar P , Chandra R . Mechanical and thermal properties of grapheme-carbon nanotube-reinforced metal matrix composites: a molecular dynamics study[J]. Journal of Composite Materials, 2017, 51(23): 3299-3313.
4 周春玉, 曾亮, 吉莉, 等 . 石墨烯及其复合材料导热性能的研究现状[J]. 材料开发与应用, 2010, 25(6): 94-100.
Zhou C Y , Zeng L , Ji L , et al . Research on the thermal conductivities of graphene and graphene based composite materials[J]. Development and Application of Materials, 2010, 25(6): 94-100.
5 Yan Z , Nika D L , Balandin A A . Thermal properties of graphene and few-layer graphene: applications in electronics[J]. IET Circuits, Devices & Systems, 2015, 9(1): 4-12.
6 张建生, 杨君友, 朱文, 等 . 薄膜热导率测试方法研究进展[J]. 材料导报, 2010, 24(7): 103-107.
Zhang J S , Yang J Y , Zhu W , et al . Research advances in the measurement for the thermal conductivity of thin solid films[J]. Materials Review, 2010, 24(7): 103-107.
7 刘珊, 徐梁, 曾智强 . 微米级超薄石墨膜的导热性能测试[J]. 炭素, 2017, (4): 42-45.
Liu S , Xu L , Zeng Z Q . Thermal conductivity testing of thin graphite films[J]. Carbon, 2017, (4): 42-45.
8 厉阳, 侯德鑫, 叶树亮 . 基于热成像的材料热扩散率测量方法研究[J].计量学报, 2017, 38(1): 28-33.
Li Y , Hou D X , Ye S L . Research on measurement method of thermal diffusivity of materials based on thermography[J]. Acta Metrologica Sinica, 2017, 38(1): 28-33.
9 朱玉祥 . 改进型瞬态平面热源法的实验研究[D]. 青岛: 青岛理工大学, 2015.
Zhu Y X . Experimental study of improved transient plane source[D]. Qingdao: Qingdao University of Technology, 2015.
10 Ruffio E , Saury D , Petit D . Improvement and comparison of some estimators dedicated to thermal diffusivity estimation of orthotropic materials with the 3D-flash method[J]. International Journal of Heat & Mass Transfer, 2013, 64(64): 1064-1081.
11 Krapez J C , Spagnolo L , Frieß M , et al . Measurement of in-plane diffusivity in non-homogeneous slabs by applying flash thermography[J]. International Journal of Thermal Sciences, 2004, 43(10): 967-977.
12 Forte G , Ronca S . Laser-flash in-plane thermal analysis: the case of oriented UHMWPE[C]// Ⅷ International Conference on “Times of Polymers and Composites”, AIP Conference Proceedings. Naples, Italy: AIP Publishing, 2016, 1736(1): 020171.
13 Zacharia S G , Siddiqui A O , Lahiri J . In situ thermal diffusivity determination of anisotropic composite structures: transverse diffusivity measurement[J]. NDT & E International, 2012, 48: 1-9.
14 Ruoho M , Valset K , Finstad T , et al . Measurement of thin film thermal conductivity using the laser flash method[J]. Nanotechnology, 2015, 26(19): 195706.
15 Ma L , Srivastava R , Barpanda D , et al . An inverse approach to characterize anisotropic thermal conductivities of a dry fibrous preform composite[J]. Journal of Reinforced Plastics & Composites, 2013, 32(24): 1916-1927.
16 Lei Z , Zhu S K , Pan N . Transient methods of thermal properties measurement on fibrous materials[J]. Journal of Heat Transfer, 2010, 132(3): 39-51.
17 江楠竹, 潘江, 王玉刚, 等 . TPS法导热系数测量的仿真分析[J]. 中国测试, 2016, 42(6): 122-126.
Jiang N Z , Pan J , Wang Y G , et al . Simulation and analysis of thermal conductivity measurement with TPS method[J]. China Measurement & Testing Technology, 2016, 42(6): 122-126.
18 周倩楠 . 石墨烯/碳纳米管/环氧树脂复合材料的导热性能的实验研究[D]. 青岛: 青岛理工大学, 2018.
Zhou Q N . Experimental study on thermal conductivity of GP / MWCNTs /EP composites[D]. Qingdao: Qingdao University of Technology, 2018.
19 翟德怀 . 基于Hot Disk的薄板材料导热系数测量方法的研究[D]. 广州: 华南理工大学, 2015.
Zhai D H . Study on the thermal conductivity measurement of thin samples by Hot Disk thermal constants analyser[D]. Guangzhou: South China University of Technology, 2015.
20 Wang Y W , Li Y N . Influence of heat loss through probe electrical leads on thermal conductivity measurement with TPS method[J]. Journal of Measurement Science & Instrumentation, 2018, 9(1): 9-15.
21 Beyerle R , Smalc M , Wayne R , et al . A comparison of methods to measure the thermal diffusivity of anisotropic graphite heat spreaders[C]// Electronic and Photonic Packaging Division, ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. California, USA: American Society of Mechanical Engineers, 2013: V002T08A022.
22 邓玉杰 . 基于3ω法体块和薄膜材料热物性的研究[D]. 南京: 南京大学, 2016.
Deng Y J . Study on buification and thin-film thermal properties based on the 3ω method[D]. Nanjing: Nanjing University, 2016.
23 何龙 . 3ω法在薄膜界面热阻测量中的应用[D]. 成都: 电子科技大学, 2016.
He L . Application of the 3-omega method on measuring the interfacial thermal resistance in thin films[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
24 苏国萍, 唐大伟, 郑兴华, 等 . 3ω方法测量各向异性SiC晶体的导热系数[J]. 工程热物理学报, 2011, 32(11): 1885-1888.
Su G P , Tang D W , Zheng X H , et al . Determination of thermal conductivity of anisotropic SiC crystal using 3ω method[J]. Journal of Engineering Thermophysics, 2011, 32(11): 1885-1888.
25 Zhu Y . Heat-loss modified Angstrom method for simultaneous measurements of thermal diffusivity and conductivity of graphite sheets: the origins of heat loss in Angstrom method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 784-791.
26 Ras M A , May D , Wunderle B . Novel test stand for thermal diffusivity measurement of bulk and thin films[C]// 2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). Budapest, Hungary: IEEE, 2016: 243-249.
27 Aaron K , Tang X , Tritt T M . Measurement of the in-plane thermal conductivity of single crystals by the parallel thermal conductance technique[C]// ICT 2005 International Conference on Thermoelectrics. SC, USA: IEEE, 2005: 87-90.
28 Teertstra P , Karimi G , Li X . Measurement of in-plane effective thermal conductivity in PEM fuel cell diffusion media[J]. Electrochimica Acta, 2011, 56(3): 1670-1675.
29 Sadeghi E , Djilali N , Bahrami M . A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(7): 3565-3571.
30 Gholami A , Ahmadi M , Bahrami M . A modified steady state method for measurement of in-plane thermal conductivity[C]// 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). Alabama, USA: IEEE, 2016: 22-26.
31 蔡北虎, 董德平, 屈金祥 . 国产石墨薄膜低温导热系数测量[J]. 低温工程, 2008, (1): 29-32.
Cai B H , Dong D P , Qu J X . Measurement of thermal conductivity for home-made graphite sheet at low temperature[J]. Cryogenics, 2008, (1): 29-32.
[1] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[2] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[3] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[4] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[5] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[6] 谈周妥, 郭志罡, 杨剑, 王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100.
[7] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[8] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[9] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[10] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[11] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[12] 曹晨鑫, 杜玉鹏, 王昕, 王振雷. 基于Ms-LWPLS的化工过程网络化性能分级评估方法[J]. 化工学报, 2019, 70(S1): 141-149.
[13] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[14] 李安军, 陈晓庆, 李健, 黄超, 周振, 卢奇. 两种波纹深度板片传热及阻力特性的对比实验研究[J]. 化工学报, 2019, 70(9): 3377-3384.
[15] 杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周云龙, 陈飞, 孙斌. Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine[J]. CIESC Journal, 2008, 16(6): 932 -840 .
[2] 张伟勇, 黄德先, 王毓栋, 王京春. Adaptive State Feedback Predictive Control and Expert Control for a Delayed Coking Furnace[J]. CIESC Journal, 2008, 16(4): 590 -598 .
[3] 杜竹玮, 李清海, 佟萌, 李少华, 李浩然. Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment[J]. CIESC Journal, 2008, 16(5): 772 -777 .
[4] 朱春英, 马友光, 季喜燕. Diffusion Coefficients of L-Arginine in Non-Newtonian Fluid[J]. CIESC Journal, 2008, 16(6): 856 -860 .
[5] 龚行楚, 吕阳成, 李牧, 马雪峰, 倪前银, 骆广生. Selection and Evaluation of a New Extractant for Caprolactam Extraction[J]. CIESC Journal, 2008, 16(6): 876 -880 .
[6] 王秀林, 陈光进, 孙长宇, 杨兰英, 马庆兰, 陈俊, 刘鹏, 唐绪龙, 赵焕伟, 陈卫东. The Dependence of the Dissociation Rate of Methane-SDS Hydrate below Ice Point on Its Manners of Forming and Processing[J]. CIESC Journal, 2009, 17(1): 128 -135 .
[7] 付鹏, 胡松, 向军, 孙路石, 杨涛, 张安超, 张军营. Mechanism Study of Rice Straw Pyrolysis by Fourier Transform Infrared Technique[J]. CIESC Journal, 2009, 17(3): 522 -529 .
[8] 赵学哲, 邓声威, 黄永民, 刘洪来, 胡英. Simulation of Morphologies and Mechanical Properties of A/B Polymer Blend Film [J]. CIESC Journal, 2011, 19(4): 549 -557 .
[9] 刘少友, 陆建平, 冯庆革, 唐文华. Effect of Ethanol on Synthesis and Electrochemical Property of Mesoporous Al-doped Titanium Dioxide via Solid-state Reaction [J]. CIESC Journal, 2011, 19(4): 674 -681 .
[10] 戴建英, 张媛丽, 修志龙. Salting-out Extraction of 2,3-Butanediol from Jerusalem artichoke-based Fermentation Broth [J]. CIESC Journal, 2011, 19(4): 682 -686 .