化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 201-207.doi: 10.11949/0438-1157.20190492

• 流体力学与传递现象 • 上一篇    下一篇

含不凝气体蒸汽波节管内凝结特性研究

贾文华(),田茂诚(),张冠敏,魏民   

  1. 山东大学能源与动力工程学院,山东 济南 250061
  • 收稿日期:2019-05-09 修回日期:2019-05-15 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 田茂诚 E-mail:1085941792@qq.com;tianmc65@sdu.edu.cn
  • 作者简介:贾文华(1993—),女,硕士研究生,1085941792@qq.com
  • 基金资助:
    国家自然科学基金项目(51676114);山东省自然科学基金项目(ZR2016EEM26)

Study on condensation characteristics of vapor with non-condensable gas in corrugated tubes

Wenhua JIA(),Maocheng TIAN(),Guanmin ZHANG,Min WEI   

  1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2019-05-09 Revised:2019-05-15 Online:2019-09-05 Published:2019-11-07
  • Contact: Maocheng TIAN E-mail:1085941792@qq.com;tianmc65@sdu.edu.cn

摘要:

通过数值模拟,研究了波节结构、空气含量及Reynolds数Re对含空气的水蒸气波节管内凝结特性的影响,并与圆形换热管内的情况进行了对比。模拟结果表明:空气含量增加,波节管壁面平均传热系数减小;波节管内流体流动和换热过程均呈现振荡波动;波节高度增加,壁面平均传热系数先增加后降低,在波节高度0.032 m达到峰值,而摩擦系数一直增加;波节间距减小,波节宽度增加,壁面平均传热系数及摩擦系数均增大;波节高度对波节管内流动和换热影响均大于波节宽度和波节间距。

关键词: 数值模拟, 波节管, 不凝气体, 管内冷凝, 气液两相流, 混合物

Abstract:

This paper presents a numerical investigation on the condensation characteristics of vapor with non-condensable gas in corrugated tubes. Several 2D examples with different corrugated structures, air contents and Reynolds numbers are studied and compared. Results show that along with the increase of air content, the wall average heat transfer coefficient decreases in the corrugated tube. The oscillation of fluid flow and heat transfer is generated due to the corrugated structure. With the increasing of wave height, the skin friction coefficient increased, and the wall average heat transfer coefficient first increased, and then decreased, the maximum of wall average heat transfer coefficient in this paper is in 0.032 m. The influence of wave height on the flow and heat transfer characteristics is more obvious than the width of the wave node and the space between two waves. The effect of inlet fluid flow-rate on the skin friction coefficient is also evaluated and discussed to provide some guidelines for future engineering applications.

Key words: numerical simulation, corrugated tubes, non-condensable gas, condensation inside tubes, gas-liquid flow, mixtures

中图分类号: 

  • TK 124

图1

物理模型"

表1

模型具体尺寸"

管号

换热管

内径/m

波节高度/m

换热管

长度/m

波节间距s1/m波节宽度s2/m
1#0.02500.275
2#0.0250.0030.2750.0050.015
3#0.0250.050.2750.0050.015
4#0.0250.0070.2750.0050.015
5#0.0250.0090.2750.0050.015
6#0.0250.0090.2570.0030.015
7#0.0250.0090.2930.0070.015
8#0.0250.0090.2550.0050.013
9#0.0250.0090.2950.0050.017

图2

对比模型"

图3

换热管中心线温度"

图4

不同换热管结构内壁面平均传热系数随空气含量变化"

图5

不同Re下壁面平均传热系数随换热管结构的变化"

图6

不同结构换热管内流体速度分布云图"

图7

不同Re下壁面平均传热系数随波节间距及波节宽度的变化"

图8

5#、7#和9#换热管局部位置流体流速的变化"

图9

不同波节结构下壁面摩擦系数随Re的变化"

1 OthmerD F. The condensation of steam[J]. Industrial and Engineering Chemistry, 1929, 21(6): 576-583.
2 王补宣, 杜小泽. 细竖管内流动凝结液膜的稳定性分析[J]. 化工学报, 2000, 51(1): 7-11.
WangB X, DuX Z. Stability analysis of condensation liquid film in fine vertical tube [J]. Journal of Chemical Industry and Engineering (China), 2000, 51(1): 7-11.
3 SongW M, MengJ A, LiZ X. Optimization of flue gas convective heat transfer with condensation in a rectangular channel[J]. Chinese Science Bulletin, 2011, 56(3): 263-268.
4 HuangJ, ZhangJ, WangL. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas[J]. Applied Thermal Engineering, 2015, 89: 469-484.
5 王四芳, 兰忠, 王爱丽, 等. 超疏水表面蒸汽及含不凝气蒸汽滴状冷凝传热实验分析[J]. 化工学报, 2010, 61(3): 607-611.
WangS F, LanZ, WangA L, et al. Dropwise condensation of steam and steam-air mixture on super-hydrophobic surfaces [J]. CIESC Journal, 2010, 61 (3): 607-611.
6 周兴东, 马学虎, 兰忠, 等. 滴状冷凝强化含不凝气的蒸气冷凝传热机制[J]. 化工学报, 2007, 58(7): 1619-1625.
ZhouX D, MaX H, LanZ, et al. Mechanism of dropwise condensation heat transfer enhancement in presence of noncondensable gas [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1619-1625.
7 ChantanaC, KumarS. Experimental and theoretical investigation of air-steam condensation in a vertical tube at low inlet steam fractions[J]. Applied Thermal Engineering, 2013, 54(2): 399-412.
8 LiJ D. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 708-721.
9 YinZ, WenJ, WuY, et al. Effect of non-condensable gas on laminar film condensation of steam in horizontal minichannels with different cross-sectional shapes[J]. International Communications in Heat and Mass Transfer, 2016, 70: 127-131.
10 KekaulaK, ChenY, MaT, et al. Numerical investigation of condensation in inclined tube air-cooled condensers[J]. Applied Thermal Engineering, 2017, 118(Complete): 418-429.
11 吴峰. 波纹管内流动与传热三维数值模拟[J]. 石油化工设备, 2009, 38(1): 22-26.
WuF. Three-dimensional numerical simulation of flow and heat transfer in corrugated tubes [J]. Petrochemical Equipment, 2009, 38(1): 22-26.
12 吴峰. 空气外掠波纹管束强化传热规律数值计算[J]. 热能动力工程, 2009, 24(4): 452-456.
WuF. Numerical calculation of enhanced heat transfer law of air external swept corrugated bundles [J]. Thermal Energy and Power Engineering, 2009, 24(4): 452-456.
13 俞接成, 杜晓萌. 波纹管层流传热与流动的三维数值模拟[J]. 北京石油化工学院学报, 2011, 19(4): 11-16.
YuJ C, DuX M. Three-dimensional numerical simulation of laminar heat transfer and flow in corrugated tubes[J]. Journal of Beijing Institute of Petrochemical Technology, 2011, 19(4): 11-16.
14 王大成, 王二利, 罗小平. 波纹管结构参数对传热性能影响[J]. 石油化工设备, 2014, 43(1): 14-17.
WangD C, WangE L, LuoX P. Influence of structural parameters of corrugated tubes on heat transfer performance [J]. Petrochemical Equipment, 2014, 43(1): 14-17.
15 WangW, ZhangY, LiB, et al. Numerical investigation of tube-side fully developed turbulent flow and heat transfer in outward corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2018, 116: 115-126.
16 肖金花, 钱才富, 黄志新.波纹管传热强化效果与机理研究[J].化学工程, 2007, (1): 12-15.
XiaoJ H, QianC F, HuangZ X. Study on heat transfer enhancement effect and mechanism of corrugated tubes [J]. Chemical Engineering (China), 2007, (1): 12-15.
17 王补宣, 杜小泽. 细圆管内流动凝结换热的实验研究[J]. 工程热物理学报, 2000, 21(3): 324-328.
WangB X, DuX Z. Experimental study on flow condensation heat transfer in thin circular tubes [J]. Journal of Engineering Thermophysics, 2000, 21(3): 324-328.
18 ChengF, YinZ, DaiR, et al. Condensation heat transfer characteristic of high-speed steam/nitrogen mixture in horizontal rectangular channel[J]. Experimental Thermal and Fluid Science, 2016, 78(S0): 292-300.
19 YiQ J, TianM C, YanW J, et al. Visualization study of the influence of non-condensable gas on steam condensation heat transfer[J]. Applied Thermal Engineering, 2016, 106: 13-21.
20 GuH F, ChenQ, WangH J, et al. Condensation of a hydrocarbon in the presence of a non-condensable gas: heat and mass transfer[J]. Applied Thermal Engineering, 2015, 91: 938-945.
21 AroonratK, WongwisesS. Experimental study on two-phase condensation heat transfer and pressure drop of R-134a flowing in a dimpled tube[J]. International Journal of Heat and Mass Transfer, 2016, 106(S0): 437-448.
22 曾敏, 王秋旺, 屈治国, 等. 波纹管内强制对流换热与阻力特性的实验研究[J].西安交通大学学报, 2002, (3): 237-240.
ZengM, WangQ W, QuZ G, et al. Experimental study on the pressure drop and heat transfer characteristics in corrugated tubes [J]. Journal of Xi’an Jiaotong University, 2002, (3): 237-240.
23 仝潘, 范广铭, 孙中宁, 等. 竖直波节管外含空气蒸汽冷凝传热特性研究[C]//中国核学会核能动力分会反应堆热工流体专业委员会.第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会论文集. 北京: 中国核学会核能动力分会反应堆热工流体专业委员会, 2015.
TongP, FanG M, SunZ N, et al. Study on the condensation and heat transfer characteristics of vapor-air outside the vertical corrugated tubes[C]//Steam Condensation Heat Transfer Characteristics Research of Nuclear Power Branch of China Nuclear Society Reactor Thermal Fluid Professional Committee. The 14th National Conference on Reactor Thermal Fluid and Key Laboratory of Nuclear Reactor Thermal Hydraulic Technology in 2015 Academic Conference. Beijing: Proceedings of China Nuclear Society Nuclear Power Reactor Thermal Fluid Professional Committee of Chapter, 2015.
24 YangD, SunB, LiH, et al. Experimental study on the heat transfer and flow characteristics of nanorefrigerants inside a corrugated tube[J]. International Journal of Refrigeration, 2015, 56: 213-223.
25 LiX W, MengJ A, GuoZ Y. Turbulent flow and heat transfer in discrete double incline ribs tube[J].Int. J. Heat Mass Transfer, 2009, 52(3/4): 962-970.
26 SongW M, MengJ A, LiZ X. Optimization of flue gas convective heat transfer with condensation in a rectangular channel[J]. Chinese Science Bulletin, 2011, 56(3): 263-268.
27 鹿磊.一种高精度简单的湿空气物性经验公式[J]. 中国科技信息, 2011, (12): 38-40.
LuL.A high precision empirical formula for simple moist air properties[J]. Technology Information of China, 2011, (12): 38-40.
28 KuhnS Z, SchrockV E, PetersonP F. An investigation of condensation from steam–gas mixtures flowing downward inside a vertical tube[J]. Nuclear Engineering and Design, 1997, (177): 53-69.
[1] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[2] 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[3] 蒋二辉,张东伟,周俊杰,沈超,魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[4] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
[5] 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[6] 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
[7] 赵庆国, 冯建茹, 吴玉庭, 郭航. 混合熔融盐低温共熔区的密度计算[J]. 化工学报, 2019, 70(S2): 37-43.
[8] 张楠, 陈龙祥, 胡芃. 混合工质临界性质的推算研究[J]. 化工学报, 2019, 70(S2): 1-7.
[9] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[10] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[11] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[12] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[13] 田震, 成有为, 王丽军, 李希. 温度与压力对单孔气泡形成过程的影响[J]. 化工学报, 2019, 70(9): 3337-3345.
[14] 王斯民, 孙利娟, 宋晨, 张早校, 文键. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362.
[15] 王浩宇, 刘应书, 张传钊, 杨雄, 陈江伟. π型向心径向流吸附器变质量流动特性研究[J]. 化工学报, 2019, 70(9): 3385-3395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖新颜, 刘健飞. Synthesis and Characterization of Fluorine-containing Polyacrylate Emulsion with Core-Shell Structure[J]. CIESC Journal, 2008, 16(4): 626 -630 .
[2] 张光旭, 陶玲, 张高勇. Effect of Hydrophobic Carbon Chain Length on the Crystal Structure of MCM-41[J]. CIESC Journal, 2008, 16(4): 631 -634 .
[3] 龚行楚, 吕阳成, 李牧, 马雪峰, 倪前银, 骆广生. Selection and Evaluation of a New Extractant for Caprolactam Extraction[J]. CIESC Journal, 2008, 16(6): 876 -880 .
[4] 范春利, 孙丰瑞, 杨立. A Numerical Method on Inverse Determination of Heat Transfer Coefficient Based on Thermographic Temperature Measurement[J]. CIESC Journal, 2008, 16(6): 901 -908 .
[5] 张文启, 饶品华, 张辉, 徐菁利. The Role of Diatomite Particles in the Activated Sludge System for Treating Coal Gasification Wastewater[J]. CIESC Journal, 2009, 17(1): 167 -170 .
[6] 杨刚, 史宏, 刘文强, 邢卫红, 徐南平. Investigation of Mg2+/Li+Separation by Nanofiltration[J]. CIESC Journal, 2011, 19(4): 586 -589 .
[7] 陈秉梅, 许小平, 侯志国, 李忠琴, 阮文兵. Identification and Mutagenesis of a New Isolated Strain Bacillus sp. B26 for Producing(R)-α-Hydroxyphenylacetic Acid [J]. CIESC Journal, 2011, 19(4): 636 -643 .
[8] 赵成业;刘兴高.

自适应粒子群优化算法在聚丙烯熔融指数预报上的应用

[J]. CIESC Journal, 2010, 61(8): 2030 -2034 .
[9] 谭天伟,贺小进,杜卫霞. 壳聚糖金属离子印迹树脂的吸附模型 [J]. CIESC Journal, 2001, 52(2): 176 -178 .
[10] 脱瀚斐, 厉彦忠, 谭宏博. 空气分离与天然气液化组合循环 [J]. 化工学报, 2008, 59(10): 2498 -2504 .